56 results on '"Pascal Omnes"'
Search Results
2. Investigating the effect of process parameters for fused filament fabrication
- Author
-
Asma Boumedine, Samir Lecheb, Khaled Benfriha, Pascal Omnes, Laboratoire Conception de Produits et Innovation (LCPI), Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Université M'Hamed Bougara Boumerdes (UMBB), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Analyse, Géométrie et Applications (LAGA), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
- Subjects
Design of experiment (DOE) ,Mathematical modelling ,Additive manufacturing ,Génie des procédés [Sciences de l'ingénieur] ,Full factorial design ,Dimensional accuracy ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Fused Filament Fabrication (FFF) ,Geometrical characterization ,Industrial and Manufacturing Engineering ,Composites - Abstract
International audience; Fused Filament Fabrication (FFF) is a promising technology that is largely developed in small series, as this technology optimizes supply chains by reducing production time and costs. However, its shortcomings have slowed its adoption as a dominant production technology. Among its weaknesses, this work focuses on geometric and dimensional accuracy within tolerance range. There is a need for understanding the sources of geometrical inaccuracies and for methods of characterizing them, in order to modify the input parameters to eventually obtain the desired geometry. This work first focuses on the geometric and dimensional accuracy of parts printed by the FFF process by studying the influence of the inner radius of a cylindrical part, the type of material and the type of filling pattern. The levels with the greatest dimensional dispersion are the largest radius, the nylon material, and the hexagonal filling pattern. Secondly, a defect characterization method associated with a parametric mathematical model is developed. The 3D scanner enables the retrieval of the coordinates of the printed geometry; this allows to characterize the errors with respect to the theoretical 3D model and to modelize the printed part by a series of ellipses of which we obtain the analytical equations, as a first step of a correction process.
- Published
- 2023
- Full Text
- View/download PDF
3. A posteriori error estimates for the time-dependent convection-diffusion-reaction equation coupled with the Darcy system
- Author
-
Nancy Chalhoub, Rebecca El Zahlaniyeh, Toni Sayah, Pascal Omnes, Université Saint-Joseph de Beyrouth (USJ), Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
- Subjects
a posteriori error estimates ,Discretization ,Applied Mathematics ,Numerical analysis ,finite element method ,Space (mathematics) ,Backward Euler method ,convection-diffusion-reaction equation ,Finite element method ,Darcy–Weisbach equation ,A priori and a posteriori ,Applied mathematics ,Darcy's equations ,adaptive methods ,Convection–diffusion equation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; In this article, we consider the time dependent convection-diffusion-reaction equation coupled with the Darcy equation. We propose a numerical scheme based on finite element methods for the discretization in space and the implicit Euler method for the discretization in time. We establish optimal a posteriori error estimates with two types of computable error indicators, the first one linked to the time discretization and the second one to the space discretization. Finally, numerical investigations are performed and presented.
- Published
- 2021
- Full Text
- View/download PDF
4. A posteriori error estimates for the large eddy simulation applied to stationary Navier–Stokes equations
- Author
-
Pascal Omnes, Toni Sayah, Ghina Nassreddine, Université Saint-Joseph de Beyrouth (USJ), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Numerical Analysis ,Applied Mathematics ,finite element method ,Navier-Stokes ,Large Eddy Simulation ,Finite element method ,a posteriori error estimation ,Computational Mathematics ,Applied mathematics ,A priori and a posteriori ,Navier stokes ,Navier–Stokes equations ,Analysis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Large eddy simulation ,Mathematics - Abstract
International audience; In this paper, we study in two and three space dimensions, the a posteriori error estimates for the Large Eddy Simulation applied to the Navier-Stokes system. We begin by introducing the Navier-Stokes and the corresponding Large Eddy Simulation (LES) equations. Then we introduce the corresponding discrete problem based on the finite element method. We establish an a posteriori error estimation with three types of error indicators related to the filter of the LES method, to the discretization and to the linearization. Finally, numerical investigations are shown and discussed.
- Published
- 2022
- Full Text
- View/download PDF
5. Enriched nonconforming multiscale finite element method for Stokes flows in heterogeneous media based on high-order weighting functions
- Author
-
Qingqing Feng, Gregoire Allaire, Pascal Omnes, CEA- Saclay (CEA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Mécanique des Fluides, Energies et Environnement (EDF R&D MFEE), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, and CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
- Subjects
Multiscale Finite Element Method ,Stokes Flows ,65N30 ,Crouzeix-Raviart Element ,Ecological Modeling ,Modeling and Simulation ,General Physics and Astronomy ,General Chemistry ,76M30 ,76D07 ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Computer Science Applications ,Mathematics::Numerical Analysis - Abstract
International audience; This paper addresses an enriched nonconforming Multiscale Finite Element Method (MsFEM) to solve viscous incompressible flow problems in genuine heterogeneous or porous media. In the work of [B. P. Muljadi, J. Narski, A. Lozinski, and P. Degond, Multiscale Modeling \& Simulation 2015 13:4, 1146-1172] and [G. Jankowiak and A. Lozinski, arXiv:1802.04389 [math.NA], 2018], a nonconforming MsFEM has been first developed for Stokes problems in such media. Based on these works, we propose an innovative enriched nonconforming MsFEM where the approximation space of both velocity and pressure are enriched by weighting functions which are defined by polynomials of higher-degree. Numerical experiments show that this enriched nonconforming MsFEM improves significantly the accuracy of the nonconforming MsFEMs. Theoretically, this method provides a general framework which allows to find a good compromise between the accuracy of the method and the computing costs, by varying the degrees of polynomials.
- Published
- 2022
- Full Text
- View/download PDF
6. Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity
- Author
-
Jonathan Jung, Stéphane Dellacherie, Pascal Omnes, Hydro-Québec - TransÉnergie et Équipement, DCMÉ, Prévisions de contrôle du réseau, Hydro-Québec TransÉnergie, Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, and PLAFRIM
- Subjects
Numerical Analysis ,Finite volume method ,Applied Mathematics ,Mathematical analysis ,Godunov's scheme ,010103 numerical & computational mathematics ,Euler system ,Numerical diffusion ,Space (mathematics) ,01 natural sciences ,law.invention ,Euler equations ,010101 applied mathematics ,Computational Mathematics ,symbols.namesake ,Mach number ,law ,Modeling and Simulation ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Cartesian coordinate system ,0101 mathematics ,Analysis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; Classical finite volume schemes for the Euler system are not accurate at low Mach number and some fixes have to be used and were developed in a vast literature over the last two decades. The question we are interested in in this article is: What about if the porosity is no longer uniform? We first show that this problem may be understood on the linear wave equation taking into account porosity. We explain the influence of the cell geometry on the accuracy property at low Mach number. In the triangular case, the stationary space of the Godunov scheme approaches well enough the continuous space of constant pressure and divergence-free velocity, while this is not the case in the Cartesian case. On Cartesian meshes, a fix is proposed and accuracy at low Mach number is proved to be recovered. Based on the linear study, a numerical scheme and a low Mach fix for the non-linear system, with a non-conservative source term due to the porosity variations, is proposed and tested.
- Published
- 2021
- Full Text
- View/download PDF
7. Coupling Parareal with Optimized Schwarz waveform relaxation for parabolic problems
- Author
-
Duc Quang Bui, Caroline Japhet, Yvon Maday, Pascal Omnes, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Simulation for the Environment: Reliable and Efficient Numerical Algorithms (SERENA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), This work was supported by the ANR project CINE-PARA under grant ANR-15-CE23-0019., ANR-15-CE23-0019,CINE-PARA,Méthodes de parallélisation pour cinétiques complexes(2015), and Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Numerical Analysis ,Computational Mathematics ,Parareal in time algorithm ,Applied Mathematics ,Robin transmission conditions ,Optimized Schwarz waveform relaxation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Domain decomposition ,Convergence rates ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; We propose and analyse a parallel method, both in the time and space directions, that couples the Parareal algorithm with the Optimized Schwarz waveform relaxation (OSWR) method, with only few OSWR iterations in the fine propagator and with a simple coarse propagator deduced from the Backward Euler method. The analysis of this coupled method is presented for a one-dimensional advection-reaction-diffusion equation. We prove a general convergence result for this method via energy estimates. Numerical results for two-dimensional advection-diffusion problems and for a diffusion equation with strong heterogeneities are presented, to illustrate the performance of the coupled Parareal-OSWR algorithm.
- Published
- 2021
8. Full discretization of time dependent convection-diffusion-reaction equation coupled with the Darcy system
- Author
-
Nancy Chalhoub, Pascal Omnes, Toni Sayah, Rebecca El Zahlaniyeh, Université Saint-Joseph de Beyrouth (USJ), Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
- Subjects
a priori error estimates ,Algebra and Number Theory ,Discretization ,Numerical analysis ,finite element method ,010103 numerical & computational mathematics ,Space (mathematics) ,01 natural sciences ,Backward Euler method ,Darcy–Weisbach equation ,Finite element method ,convection-diffusion-reaction equation ,010101 applied mathematics ,Computational Mathematics ,Theory of computation ,Applied mathematics ,0101 mathematics ,Darcy's equations ,Convection–diffusion equation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; In this article, we study the time dependent convection-diffusion-reaction equation coupled with the Darcy equation. We propose and analyze two numerical schemes based on finite element methods for the discretization in space and the implicit Euler method for the discretization in time. An optimal a priori error estimate is then derived for each numerical scheme. Finally, we present some numerical experiments that confirm the theoretical accuracy of the discretization.
- Published
- 2020
- Full Text
- View/download PDF
9. Optimal absorption of acoustical waves by a boundary
- Author
-
Pascal Omnes, Frédéric Magoulès, Thi Phuong Kieu Nguyen, Anna Rozanova-Pierrat, Mathématiques et Informatique pour la Complexité et les Systèmes (MICS), CentraleSupélec, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, CentraleSupélec-Université Paris-Saclay, Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, and Funding: This work was funded by the Pôle de Compétitivité Systematic (France) under thegrant OpenGPU, and the Pôle de Compétitivité CapDigital (France) under the grant Callisto-Sari.
- Subjects
Absorption (acoustics) ,Control and Optimization ,Helmholtz equation ,Wave propagation ,sound absorption ,Boundary (topology) ,wave propagation ,Robin boundary condition ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,01 natural sciences ,Mathematics - Analysis of PDEs ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,35L405, 35J05, 35J25, 15A06 ,Shape optimization ,fractals ,0101 mathematics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Dissipation ,Lipschitz continuity ,010101 applied mathematics ,Absorbing wall ,shape optimization ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Analysis of PDEs (math.AP) - Abstract
In the aim to find the simplest and most efficient shape of a noise absorbing wall to dissipate the acoustical energy of a sound wave, we consider a frequency model described by the Helmholtz equation with a damping on the boundary. The well-posedness of the model is shown in a class of domains with d-set boundaries (N -- 1 $\le$ d < N). We introduce a class of admissible Lipschitz boundaries, in which an optimal shape of the wall exists in the following sense: We prove the existence of a Radon measure on this shape, greater than or equal to the usual Lebesgue measure, for which the corresponding solution of the Helmholtz problem realizes the infimum of the acoustic energy defined with the Lebesgue measure on the boundary. If this Radon measure coincides with the Lebesgue measure, the corresponding solution realizes the minimum of the energy. For a fixed porous material, considered as an acoustic absorbent, we derive the damping parameters of its boundary from the corresponding time-dependent problem described by the damped wave equation (damping in volume)., SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, In press
- Published
- 2020
- Full Text
- View/download PDF
10. Godunov type scheme for the linear wave equation with Coriolis source term
- Author
-
Yohan Penel, Stéphane Dellacherie, Emmanuel Audusse, Pascal Omnes, and Do Minh Hieu
- Subjects
Physics::Computational Physics ,T57-57.97 ,Finite volume method ,Applied mathematics. Quantitative methods ,Discretization ,Godunov's theorem ,Mathematical analysis ,Godunov's scheme ,010103 numerical & computational mathematics ,01 natural sciences ,Term (time) ,Mathematics::Numerical Analysis ,010101 applied mathematics ,Linear map ,symbols.namesake ,Kernel (statistics) ,Froude number ,symbols ,QA1-939 ,0101 mathematics ,Mathematics - Abstract
We propose a method to explain the behaviour of the Godunov finite volume scheme applied to the linear wave equation with Coriolis source term at low Froude number. In particular, we use the Hodge decomposition and we study the properties of the modified equation associated to the Godunov scheme. Based on the structure of the discrete kernel of the linear operator discretized by using the Godunov scheme, we clearly explain the inaccuracy of the classical Godunov scheme at low Froude number and we introduce a way to modify it to recover a correct accuracy.
- Published
- 2017
11. Numerical Results for a Discrete Duality Finite Volume Discretization Applied to the Navier–Stokes Equations
- Author
-
Pascal Omnes, Sarah Delcourte, Modélisation mathématique, calcul scientifique (MMCS), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Clément Cancès, and Pascal Omnes
- Subjects
Finite volume method ,Discretization ,Mathematical analysis ,Degrees of freedom (physics and chemistry) ,Duality (optimization) ,010103 numerical & computational mathematics ,Non-dimensionalization and scaling of the Navier–Stokes equations ,01 natural sciences ,010101 applied mathematics ,symbols.namesake ,Dirichlet boundary condition ,Hagen–Poiseuille flow from the Navier–Stokes equations ,symbols ,0101 mathematics ,Navier–Stokes equations ,ComputingMilieux_MISCELLANEOUS ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; We present an application of the discrete duality finite volume method to the numerical approximation of the 2D Stokes or (unsteady) Navier–Stokes equations associated to Dirichlet boundary conditions. The finite volume method is based on the use of discrete differential operators obeying some discrete duality principles. The scheme may be seen as an extension of the classical MAC scheme to almost arbitrary meshes, thanks to an appropriate choice of degrees of freedom. Different numerical examples over triangular, cartesian, quadrangular and locally refined meshes are led in order to illustrate the possibilities and weaknesses of the method.
- Published
- 2017
- Full Text
- View/download PDF
12. Analysis of modified Godunov type schemes for the two-dimensional linear wave equation with Coriolis source term on cartesian meshes
- Author
-
Yohan Penel, Minh Hieu Do, Emmanuel Audusse, Pascal Omnes, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Numerical Analysis, Geophysics and Ecology (ANGE), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Numerical Analysis ,Finite volume method ,Physics and Astronomy (miscellaneous) ,Applied Mathematics ,Courant–Friedrichs–Lewy condition ,Godunov's scheme ,010103 numerical & computational mathematics ,01 natural sciences ,Stability (probability) ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Computer Science Applications ,law.invention ,010101 applied mathematics ,Computational Mathematics ,Nonlinear system ,law ,Modeling and Simulation ,Applied mathematics ,Cartesian coordinate system ,0101 mathematics ,Shallow water equations ,Geostrophic wind ,Mathematics - Abstract
The study deals with collocated Godunov type finite volume schemes applied to the two-dimensional linear wave equation with Coriolis source term. The purpose is to explain the wrong behaviour of the classic scheme and to modify it in order to avoid accuracy issues around the geostrophic equilibrium and in geostrophic adjustment processes. To do so, a Hodge-like decomposition is introduced. Then three different well-balanced strategies are introduced. Some properties of the associated modified equations are proven and then extended to the semi-discrete case. Stability of fully discrete schemes under a suitable CFL condition is established thanks to a Von Neumann analysis. Some numerical results reinforce the purpose and exhibit the concrete improvements achieved by the application of these new techniques in both linear and nonlinear cases.
- Published
- 2017
- Full Text
- View/download PDF
13. Analysis of Apparent Topography scheme for the linear wave equation with Coriolis force
- Author
-
Yohan Penel, Emmanuel Audusse, Minh Hieu Do, Pascal Omnes, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Numerical Analysis, Geophysics and Ecology (ANGE), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Finite Volume Method ,Coriolis Force ,Finite volume method ,Omega equation ,Fluid mechanics ,010103 numerical & computational mathematics ,Mechanics ,Shallow water flows ,01 natural sciences ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,010305 fluids & plasmas ,Physics::Geophysics ,symbols.namesake ,0103 physical sciences ,Fictitious force ,symbols ,0101 mathematics ,Kelvin wave ,Shallow water equations ,Pressure gradient ,Geostrophic wind ,Physics::Atmospheric and Oceanic Physics ,Well-balanced Schemes - Abstract
International audience; The shallow water equations can be used to model many phenomena in geophysical fluid mechanics. For large scales, the Coriolis force plays an important role and the geostrophic equilibrium which corresponds to the balance between the pressure gradient and the Coriolis force is an important feature. In this communication , we investigate the stability condition and the behavior of the so-called Apparent Topography scheme which is capable of capturing a discrete version of the geostrophic equilibrium.
- Published
- 2017
- Full Text
- View/download PDF
14. Benchmark Proposal for the FVCA8 Conference: Finite Volume Methods for the Stokes and Navier–Stokes Equations
- Author
-
Franck Boyer, Pascal Omnes, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
- Subjects
general meshes ,MSC (2010): 65M08, 65N08, 76D05, 76D07 ,Finite volume method ,Computer science ,Benchmark ,Finite volume methods ,Physics::Fluid Dynamics ,incompressible fluids ,Pressure-correction method ,Incompressible flow ,Robustness (computer science) ,Hagen–Poiseuille flow from the Navier–Stokes equations ,Compressibility ,Applied mathematics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Statistical physics ,Navier-Stokes equations ,Navier–Stokes equations ,Reynolds-averaged Navier–Stokes equations ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
FVCA 2017 : International Conference on Finite Volumes for Complex Applications; This benchmark proposes test-cases to assess innovative finite volume type methods developped to solve the equations of incompressible fluid mechanics. Emphasis is set on the ability to handle very general meshes, on accuracy, robustness and computational complexity. Two-dimensional as well as three-dimensional tests with known analytical solutions are proposed for the steady Stokes and both steady and unsteady Navier-Stokes equations, as well as classical lid-driven cavity tests.
- Published
- 2017
- Full Text
- View/download PDF
15. Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects
- Author
-
Clément Cancès, Pascal Omnes, Reliable numerical approximations of dissipative systems (RAPSODI ), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, C. Cancès and P. Omnes, Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computer science ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,ComputingMilieux_MISCELLANEOUS ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience
- Published
- 2017
16. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
- Author
-
Pascal Omnes, Clément Cancès, Reliable numerical approximations of dissipative systems (RAPSODI ), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS), Service de Thermo-hydraulique et de Mécanique des Fluides (STMF), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, C. Cancès and P. Omnes, Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Inria Lille - Nord Europe, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
- Subjects
010101 applied mathematics ,Physics ,Alternating direction implicit method ,Elliptic partial differential equation ,Discontinuous Galerkin method ,Mathematical analysis ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,010103 numerical & computational mathematics ,Finite volume method for one-dimensional steady state diffusion ,0101 mathematics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience
- Published
- 2017
17. A discrete duality finite volume discretization of the vorticity-velocity-pressure stokes problem on almost arbitrary two-dimensional grids
- Author
-
Sarah Delcourte and Pascal Omnes
- Subjects
Numerical Analysis ,Finite volume method ,Applied Mathematics ,Mathematical analysis ,Degrees of freedom (physics and chemistry) ,Duality (optimization) ,Vorticity ,Differential operator ,Computational Mathematics ,Convergence (routing) ,Partial derivative ,Boundary value problem ,Analysis ,Mathematics - Abstract
We present an application of the discrete duality finite volume method to the numerical approximation of the vorticity-velocity-pressure formulation of the two-dimensional Stokes equations, associated to various nonstandard boundary conditions. The finite volume method is based on the use of discrete differential operators obeying some discrete duality principles. The scheme may be seen as an extension of the classical Marker and Cell scheme to almost arbitrary meshes, thanks to an appropriate choice of degrees of freedom. The efficiency of the scheme is illustrated by numerical examples over unstructured triangular and locally refined nonconforming meshes, which confirm the theoretical convergence analysis led in the article. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1–30, 2015
- Published
- 2014
- Full Text
- View/download PDF
18. Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system
- Author
-
Stéphane Dellacherie, Pascal Omnes, Pierre-Arnaud Raviart, Jonathan Jung, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational Approximation with discontinous Galerkin methods and compaRison with Experiments (CAGIRE), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS), Service Fluide numériques, Modélisation et Etudes (SFME), Département de Modélisation des Systèmes et Structures (DM2S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
- Subjects
linear wave equation ,Applied Mathematics ,Godunov's theorem ,Mathematical analysis ,Godunov's scheme ,010103 numerical & computational mathematics ,Euler system ,Roe scheme ,01 natural sciences ,Godunov scheme ,010101 applied mathematics ,Roe solver ,symbols.namesake ,low Mach number flow ,Mach number ,Modeling and Simulation ,Euler's formula ,symbols ,Compressibility ,Compressible Euler system ,0101 mathematics ,10. No inequality ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics ,Linear stability - Abstract
International audience; This article is composed of three self-consistent chapters that can be read independently of each other. In Chapter 1, we define and we analyze the low Mach number problem through a linear analysis of a perturbed linear wave equation. Then, we show how to modify Godunov type schemes applied to the linear wave equation to make this scheme accurate at any Mach number. This allows to define an all Mach correction and to propose a linear all Mach Godunov scheme for the linear wave equation. In Chapter 2, we apply the all Mach correction proposed in Chapter 1 to the case of the non-linear barotropic Euler system when the Godunov type scheme is a Roe scheme. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in this non-linear case by showing how this construction is related with the linear analysis of Chapter 1. At last, we apply in Chapter 3 the all Mach correction proposed in Chapter 1 in the case of the full Euler compressible system. Numerous numerical results proposed in Chapters 1, 2 and 3 justify the theoretical results and show that the obtained all Mach Godunov type schemes are both accurate and stable for all Mach numbers. We also underline that the proposed approach can be applied to other schemes and allows to justify other existing all Mach schemes.
- Published
- 2016
- Full Text
- View/download PDF
19. Preliminary results for the study of the Godunov Scheme Applied to the Linear Wave Equation with Porosity at Low Mach Number
- Author
-
Pascal Omnes, Stéphane Dellacherie, Jonathan Jung, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de recherche conventionné Modélisation et approximation numérique orientées pour l'énergie nucléaire (LRC Manon), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational Approximation with discontinous Galerkin methods and compaRison with Experiments (CAGIRE), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), AllianSTIC-EFREI, Efrei (Efrei), Département de Modélisation des Systèmes et Structures (DM2S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
- Subjects
010103 numerical & computational mathematics ,Space (mathematics) ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Mathematics::Numerical Analysis ,Godunov scheme ,symbols.namesake ,law ,0103 physical sciences ,QA1-939 ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Polygon mesh ,Cartesian coordinate system ,compressible Euler system with porosity ,0101 mathematics ,Porosity ,Linear wave equation ,Mathematics ,Physics::Computational Physics ,T57-57.97 ,Applied mathematics. Quantitative methods ,Godunov's theorem ,Mathematical analysis ,linear wave equation with porosity ,Godunov's scheme ,low Mach number flow ,Mach number ,all Mach scheme ,symbols ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
We introduce continuous tools to study the low Mach number behavior of the Godunov scheme applied to the linear wave equation with porosity on cartesian meshes. More precisely, we extend the Hodge decomposition to a weighted L2 space in the continuous case and we study the properties of the modified equation associated to this Godunov scheme. This allows to partly explain the inaccuracy of the Godunov scheme at low Mach number on cartesian meshes and to propose two corrections: a first one named low Mach and a second one named all Mach. These results are preliminary since it remains to prove them in the discrete case.
- Published
- 2016
- Full Text
- View/download PDF
20. The influence of cell geometry on the Godunov scheme applied to the linear wave equation
- Author
-
Felix Rieper, Pascal Omnes, and Stéphane Dellacherie
- Subjects
Numerical Analysis ,Physics and Astronomy (miscellaneous) ,Discretization ,Applied Mathematics ,Operator (physics) ,Godunov's theorem ,Mathematical analysis ,Godunov's scheme ,Mathematics::Numerical Analysis ,Computer Science Applications ,Computational Mathematics ,symbols.namesake ,Kernel (image processing) ,Modeling and Simulation ,Euler's formula ,symbols ,Compressibility ,Tetrahedron ,Mathematics - Abstract
By studying the structure of the discrete kernel of the linear acoustic operator discretized with a Godunov scheme, we clearly explain why the behaviour of the Godunov scheme applied to the linear wave equation deeply depends on the space dimension and, especially, on the type of mesh. This approach allows us to explain why, in the periodic case, the Godunov scheme applied to the resolution of the compressible Euler or Navier-Stokes system is accurate at low Mach number when the mesh is triangular or tetrahedral and is not accurate when the mesh is a 2D (or 3D) cartesian mesh. This approach confirms also the fact that a Godunov scheme remains accurate when it is modified by simply centering the discretization of the pressure gradient.
- Published
- 2010
- Full Text
- View/download PDF
21. A Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Laplace Equation
- Author
-
Yohan Penel, Pascal Omnes, Yann Rosenbaum, Service Fluide numériques, Modélisation et Etudes (SFME), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS), and Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
- Subjects
MathematicsofComputing_NUMERICALANALYSIS ,Duality (optimization) ,010103 numerical & computational mathematics ,01 natural sciences ,Mathematics::Numerical Analysis ,Singular solution ,AMS 65N15, 65N30 ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Calculus ,Applied mathematics ,Polygon mesh ,0101 mathematics ,ComputingMethodologies_COMPUTERGRAPHICS ,Mathematics ,Laplace's equation ,Numerical Analysis ,Finite volume method ,Applied Mathematics ,Numerical analysis ,Mixed finite element method ,discrete duality ,16. Peace & justice ,a posteriori error estimation ,Finite element method ,010101 applied mathematics ,Computational Mathematics ,finite volume ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,nonconforming meshes - Abstract
International audience; An efficient and fully computable a posteriori error bound is derived for the discrete duality finite volume discretization of the Laplace equation on very general twodimensional meshes. The main ingredients are the equivalence of this method with a finite element like scheme and tools from the finite element framework. Numerical tests are performed with a stiff solution on highly nonconforming locally refined meshes and with a singular solution on triangular meshes.
- Published
- 2009
- Full Text
- View/download PDF
22. A finite volume method for the approximation of Maxwell’s equations in two space dimensions on arbitrary meshes
- Author
-
Pascal Omnes, S. Layouni, and F. Hermeline
- Subjects
Numerical Analysis ,Finite volume method ,Physics and Astronomy (miscellaneous) ,Discretization ,Applied Mathematics ,Mathematical analysis ,Gauss ,Degrees of freedom (physics and chemistry) ,Duality (optimization) ,Differential operator ,Topology ,Computer Science Applications ,Computational Mathematics ,symbols.namesake ,Maxwell's equations ,Modeling and Simulation ,symbols ,Gauss's law ,Mathematics - Abstract
A new finite volume method is presented for discretizing the two-dimensional Maxwell equations. This method may be seen as an extension of the covolume type methods to arbitrary, possibly non-conforming or even non-convex, n-sided polygonal meshes, thanks to an appropriate choice of degrees of freedom. An equivalent formulation of the scheme is given in terms of discrete differential operators obeying discrete duality principles. The main properties of the scheme are its energy conservation, its stability under a CFL-like condition, and the fact that it preserves Gauss' law and divergence free magnetic fields. Second-order convergence is demonstrated numerically on non-conforming and distorted meshes.
- Published
- 2008
- Full Text
- View/download PDF
23. Numerical and physical comparisons of two models of a gas centrifuge
- Author
-
Pascal Omnes
- Subjects
Centrifuge ,Finite volume method ,General Computer Science ,Drag ,Gas centrifuge ,Iterative method ,Computation ,Flow (psychology) ,General Engineering ,Geometry ,Mechanics ,Boundary value problem ,Mathematics - Abstract
We compare two models used to compute the internal hydrodynamics of a gas centrifuge. The scoop action is taken into account through boundary conditions on the flow entering the bowl of the centrifuge in the first model, and through sinks and drag forces in the chambers of the centrifuge in the second. The numerical approximations of the models are based on a finite volume scheme on staggered rectangular grids and on a fixed-point iterative method. Convergence of the approximations is studied numerically on a family of refined grids and comparisons of the two models are discussed for the Iguacu centrifuge. It appears that linear computations on rough grids are sufficient in the first model to correctly predict the separative power of the centrifuge, while other parameters like the return flow or the drag forces require finer meshes and non-linear computations in the second model.
- Published
- 2007
- Full Text
- View/download PDF
24. Erratum to: Finite Volumes for Complex Applications VIII—Hyperbolic, Elliptic and Parabolic Problems
- Author
-
Clément Cancès and Pascal Omnes
- Subjects
Physics ,Discontinuous Galerkin method ,Mathematical analysis - Published
- 2015
- Full Text
- View/download PDF
25. An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations
- Author
-
Anh Ha Le, Pascal Omnes, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Numerical Analysis ,MSC 65N08, 65N15, 76D07 ,Finite volume method ,Discretization ,Adaptive mesh refinement ,Applied Mathematics ,Duality (mathematics) ,Mathematical analysis ,Estimator ,Stokes equations ,discrete duality ,Upper and lower bounds ,a posteriori error estimation ,stabilization ,Computational Mathematics ,Modeling and Simulation ,Polygon mesh ,Constant (mathematics) ,Analysis ,finite volumes ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; We derive an a posteriori error estimation for the discrete duality finite volume (DDFV) discretization of the stationary Stokes equations on very general twodimensional meshes, when a penalty term is added in the incompressibility equation to stabilize the variational formulation. Two different estimators are provided: one for the error on the velocity and one for the error on the pressure. They both include a contribution related to the error due to the stabilization of the scheme, and a contribution due to the discretization itself. The estimators are globally upper as well as locally lower bounds for the errors of the DDFV discretization. They are fully computable as soon as a lower bound for the inf-sup constant is available. Numerical experiments illustrate the theoretical results and we especially consider the influence of the penalty parameter on the error for a fixed mesh and also of the mesh size for a fixed value of the penalty parameter. A global error reducing strategy that mixes the decrease of the penalty parameter and adaptive mesh refinement is described.
- Published
- 2015
- Full Text
- View/download PDF
26. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids
- Author
-
Pascal Omnes and Komla Domelevo
- Subjects
Laplace's equation ,Numerical Analysis ,Finite volume method ,Applied Mathematics ,Numerical analysis ,Superconvergence ,Finite element method ,Regular grid ,Combinatorics ,Computational Mathematics ,Modeling and Simulation ,Norm (mathematics) ,Applied mathematics ,Polygon mesh ,Analysis ,Mathematics - Abstract
We present a finite volume method based on the integration of the Laplace equation on both the cells of a primal almost arbitrary two-dimensional mesh and those of a dual mesh obtained by joining the centers of the cells of the primal mesh. The key ingredient is the definition of discrete gradient and divergence operators verifying a discrete Green formula. This method generalizes an existing finite volume method that requires "Voronoi-type" meshes. We show the equivalence of this finite volume method with a non-conforming finite element method with basis functions being P 1 on the cells, generally called "diamond-cells", of a third mesh. Under geometrical conditions on these diamond- cells, we prove a first-order convergence both in the H 1 norm and in the L 2 norm. Superconvergence results are obtained on certain types of homothetically refined grids. Finally, numerical experiments confirm these results and also show second-order convergence in the L 2 norm on general grids. They also indicate that this method performs particularly well for the approximation of the gradient of the solution, and may be used on degenerating triangular grids. An example of application on non- conforming locally refined grids is given.
- Published
- 2005
- Full Text
- View/download PDF
27. Dielectric conductivity of a bounded plasma and its rate of convergence towards its infinite-geometry value
- Author
-
Pascal Omnes
- Subjects
Physics ,Plane wave ,Vlasov equation ,Geometry ,Condensed Matter Physics ,Nonlinear system ,symbols.namesake ,Classical mechanics ,Distribution function ,Singularity ,Rate of convergence ,Bounded function ,Taylor series ,symbols - Abstract
This paper deals with the linear response of a plasma in a one-dimensional bounded geometry under the action of a time-periodic electric field. The nonlinear Vlasov equation is solved by following the characteristic curves until they reach the boundary of the domain, where the distribution function of the incoming particles is supposed to be known and independent of time. Then, a first-order Taylor expansion in the velocity variable is performed, thanks to an approximation of the exact characteristics by the unperturbed ones. The resulting first-order correction to the distribution function is finally integrated over velocities to yield the dielectric function. The special case of a plane wave for the electric field is examined and the results are compared with the more usual unbounded case: the integral does not present any singularity in the vicinity of resonant particles and the dielectric function depends on the distance to the boundary and tends to the usual infinite-geometry value when this distance tends to infinity, with a rate of convergence proportional to its inverse square root. Numerical examples are provided for illustration.
- Published
- 2003
- Full Text
- View/download PDF
28. Space–Time Domain Decomposition with Finite Volumes for Porous Media Applications
- Author
-
Pascal Omnes, Paul-Marie Berthe, and Caroline Japhet
- Subjects
Well-posed problem ,Finite volume method ,Discretization ,Iterative method ,Discontinuous Galerkin method ,Computer science ,Applied mathematics ,Duality (optimization) ,Domain decomposition methods ,Porous medium - Abstract
We present an extension of the Optimized Schwarz Waveform Relaxation method with Robin transmission conditions to finite volume schemes of DDFV type (Discrete Duality Finite Volumes) for solving heterogeneous time-dependent advection-diffusion problems. We propose a new strategy which is well adapted to domain decomposition for coupling upwind discretization of the convection with diffusion in the context of a finite volume method. The method is proven to be well posed and we prove the convergence of the iterative algorithm. Then we present numerical results to illustrate the method.
- Published
- 2014
- Full Text
- View/download PDF
29. Self-consistent Numerical Simulation of Isotope Separation by Selective Ion Cyclotron Resonance Heating in a Magnetically Confined Plasma
- Author
-
P. Louvet and Pascal Omnes
- Subjects
Electromagnetic field ,Physics ,Numerical Analysis ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Solenoidal vector field ,Applied Mathematics ,Vlasov equation ,Plasma ,Plasma modeling ,Computer Science Applications ,Computational physics ,Isotope separation ,law.invention ,Computational Mathematics ,Nonlinear system ,symbols.namesake ,Maxwell's equations ,Physics::Plasma Physics ,law ,Modeling and Simulation ,symbols - Abstract
A self-consistent nonlinear model of an isotope separation process based on selective ion cyclotron resonance heating in a magnetized plasma is presented, and its numerical resolution is described. The response of the electrons to the electromagnetic field is modeled by a cold and linear conductivity tensor, while a particle method is used to solve nonlinear Vlasov equations for the ions. The resolution of the time-harmonic Maxwell equations is achieved by a finite-element method. Both steps are coupled by an iterative procedure, which shows fast convergence. Results are presented for the case of a solenoidal launching antenna.
- Published
- 2001
- Full Text
- View/download PDF
30. Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model
- Author
-
U. Voβ, Claus-Dieter Munz, Eric Sonnendrücker, Rudolf Schneider, and Pascal Omnes
- Subjects
Electromagnetic field ,Numerical Analysis ,Gauss's law for gravity ,Physics and Astronomy (miscellaneous) ,Applied Mathematics ,Mathematical analysis ,Inhomogeneous electromagnetic wave equation ,Computer Science Applications ,Computational Mathematics ,symbols.namesake ,Continuity equation ,Maxwell's equations ,Modeling and Simulation ,symbols ,Gauss's law ,Poisson's equation ,Hyperbolic partial differential equation ,Mathematics - Abstract
Usually, non-stationary numerical calculations in electromagnetics are based on the hyperbolic evolution equations for the electric and magnetic fields and leave Gauss' law out of consideration because the latter is a consequence of the former and of the charge conservation equation in the continuous case. However, in the simulation of the self-consistent movement of charged particles in electromagnetic fields, it is a well-known fact that the approximation of the particle motion introduces numerical errors and that, consequently, the charge conservation equation is not satisfied on the dicrete level. Then, in order to avoid the increase of errors in Gauss' law, a divergence cleaning step which solves a Poisson equation for a correction potential is often added. In the present paper, a new method for incorporating Gauss' law into non-stationary electromagnetic simulation codes is developed, starting from a constrained formulation of the Maxwell equations. The resulting system is hyperbolic, and the divergence errors propagate with the speed of light to the boundary of the computational domain. Furthermore, the basic ideas of the numerical approximation are introduced and the extended hyperbolic system is treated numerically within the framework of high-resolution finite-volume schemes. Simulation results obtained with this new technique for pure electromagnetic wave propagation and for an electromagnetic particle-in-cell computation are presented and compared with other methods.
- Published
- 2000
- Full Text
- View/download PDF
31. Optimized Schwarz Waveform Relaxation for Porous Media Applications
- Author
-
Caroline Japhet and Pascal Omnes
- Subjects
Variable (computer science) ,Electronic engineering ,Radioactive waste ,Waveform ,Near and far field ,Relaxation (approximation) ,Mechanics ,Porous medium ,Geology - Abstract
Far field simulations of underground nuclear waste disposal involve a number of challenges for numerical simulations: widely differing lengths and time-scales, highly variable coefficients and stringent accuracy requirements. In the site under consideration by the French Agency for NuclearWaste Management (ANDRA), the repository would be located in a highly impermeable geological layer, whereas the layers just above and below have very different physical properties (see [1]).
- Published
- 2013
- Full Text
- View/download PDF
32. On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes
- Author
-
Pascal Omnes, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Service Fluide numériques, Modélisation et Etudes (SFME), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Delaunay meshes ,finite volume method ,010103 numerical & computational mathematics ,Topology ,01 natural sciences ,symbols.namesake ,Applied mathematics ,Voronoi meshes ,0101 mathematics ,Mathematics ,Laplace's equation ,Numerical Analysis ,Partial differential equation ,convergence ,Laplace expansion ,Applied Mathematics ,Inverse Laplace transform ,Laplace equation ,Green's function for the three-variable Laplace equation ,010101 applied mathematics ,Computational Mathematics ,error estimates ,Modeling and Simulation ,Laplace transform applied to differential equations ,Dirichlet boundary condition ,symbols ,Voronoi diagram ,Analysis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken $P^1$ function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the~$L^2$ norm, under the sufficient condition that the right-hand side of the Laplace equation belongs to~$H^1(\Omega)$.
- Published
- 2011
- Full Text
- View/download PDF
33. On the Godunov Scheme Applied to the Variable Cross-Section Linear Wave Equation
- Author
-
Stéphane Dellacherie and Pascal Omnes
- Subjects
symbols.namesake ,Cross section (physics) ,Mach number ,Scheme (mathematics) ,Godunov's theorem ,Mathematical analysis ,symbols ,Godunov's scheme ,Constant (mathematics) ,Wave equation ,Mathematics ,Variable (mathematics) - Abstract
We investigate the accuracy of the Godunov scheme applied to the variable cross-section acoustic equations. Contrarily to the constant cross-section case, the accuracy issue of this scheme in the low Mach number regime appears even in the one-dimensional case; on the other hand, we show that it is possible to construct another Godunov type scheme which is accurate in the low Mach number regime.
- Published
- 2011
- Full Text
- View/download PDF
34. Développement et analyse de méthodes de volumes finis
- Author
-
Pascal Omnes, Service Fluide numériques, Modélisation et Etudes (SFME), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Université Paris-Nord - Paris XIII, Raphaële Herbin, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- Subjects
méthode de Godunov ,système divergence rotationnel ,a priori error estimation ,volumes finis ,arbitrary meshes ,elliptic equations ,finite volume method ,maillages adaptatifs ,Godunov method ,maillages quelconques ,dualité discrète ,opérateurs différentiels discrets ,équations de Maxwell ,low Mach correction ,[MATH]Mathematics [math] ,équations hyperboliques ,équation des ondes ,adaptive meshes ,estimation a priori ,convergence ,div-curl system ,discrete duality ,équations elliptiques ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,hyperbolic equations ,a posteriori error estimation ,discrete differential operators ,hyperbolic correction ,Maxwell's equations ,correction bas Mach ,wave equation ,correction hyperbolique ,estimation a posteriori - Abstract
This document is a synthesis of a set of works concerning the development and the analysis of finite volume methods used for the numerical approximation of partial differential equations (PDEs) stemming from physics. In the first part, the document deals with colocalized Godunov type schemes for the Maxwell and wave equations, with a study on the loss of accuracy of this scheme at low Mach number. In the second part, discrete differential operators are built on fairly general, in particular very distorted or nonconforming, bidimensional meshes. These operators are used to approach the solutions of PDEs modelling diffusion, electro and magnetostatics and electromagnetism by the discrete duality finite volume method (DDFV) on staggered meshes. The third part presents the numerical analysis and some a priori as well as a posteriori error estimations for the discretization of the Laplace equation by the DDFV scheme. The last part is devoted to the order of convergence in the L^2 norm of the finite volume approximation of the solution of the Laplace equation in one dimension and on meshes with orthogonality properties in two dimensions. Necessary and sufficient conditions, relatively to the mesh geometry and to the regularity of the data, are provided that ensure the second-order convergence of the method.; Ce document synthétise un ensemble de travaux portant sur le développement et l'analyse de méthodes de volumes finis utilisées pour l'approximation numérique d'équations aux dérivées partielles issues de la physique. Le mémoire aborde dans sa première partie des schémas colocalisés de type Godunov d'une part pour les équations de l'électromagnétisme, et d'autre part pour l'équation des ondes acoustiques, avec une étude portant sur la perte de précision de ce schéma à bas nombre de Mach. La deuxième partie est consacrée à la construction d'opérateurs différentiels discrets sur des maillages bidimensionnels relativement quelconques, en particulier très déformés ou encore non-conformes, et à leur utilisation pour la discrétisation d'équations aux dérivées partielles modélisant des phénomènes de diffusion, d'électrostatique et de magnétostatique et d'électromagnétisme par des schémas de type volumes finis en dualité discrète (DDFV) sur maillages décalés. La troisième partie aborde ensuite l'analyse numérique et les estimations d'erreur a priori et a posteriori associées à la discrétisation par le schéma DDFV de l'équation de Laplace. La quatrième et dernière partie est consacrée à la question de l'ordre de convergence en norme L^2 de la solution numérique du problème de Laplace, issue d'une discrétisation volumes finis en dimension un et en dimension deux sur des maillages présentant des propriétés d'orthogonalité. L'étude met en évidence des conditions nécessaires et suffisantes relatives à la géométrie des maillages et à la régularité des données du problème afin d'obtenir la convergence à l'ordre deux de la méthode.
- Published
- 2010
35. Error estimates for a finite volume method for the Laplace equation in dimension one through discrete Green functions
- Author
-
Pascal Omnes, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Service Fluide numériques, Modélisation et Etudes (SFME), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- Subjects
error estimates ,AMS 65N15 65N22 65N30 ,Laplace equation ,Green functions ,finite volumes ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; The cell-centered finite volume approximation of the Laplace equation in dimension one is considered. An exact expression of the error between the exact and numerical solutions is derived through the use of continuous and discrete Green functions. This allows to discuss convergence of the method in the L infinity and L2 norms with respect to the choice of the control points in the cells and with respect to the regularity of the data. Well-known second-order convergence results are recovered if those control points are properly chosen and if the data belongs to H1. Counterexamples are constructed to show that second-order may be lost if these conditions are not met.
- Published
- 2009
36. A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes
- Author
-
Komla Domelevo, Pascal Omnes, Sarah Delcourte, Laboratoire de Modélisation Physique et de l'Enrichissement (LMPE), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Service Fluide numériques, Modélisation et Etudes (SFME)
- Subjects
Discretization ,volumes finis ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,65N06 (35F05) ,010103 numerical & computational mathematics ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Mathematics::Numerical Analysis ,Physics::Plasma Physics ,Applied mathematics ,Polygon mesh ,0101 mathematics ,probleme div-rot ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Curl (mathematics) ,Numerical Analysis ,Finite volume method ,convergence ,Applied Mathematics ,Numerical analysis ,maillages non-conformes ,Mathematical analysis ,Differential operator ,Physics::Classical Physics ,maillages degeneres ,010101 applied mathematics ,decomposition de Hodge discrete ,Computational Mathematics ,Vector field ,Discrete differential geometry ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; We define discrete differential operators such as grad, div and curl, on general two-dimensional non-orthogonal meshes. These discrete operators verify discrete analogues of usual continuous theorems: discrete Green formulae, discrete Hodge decomposition of vector fields, vector curls have a vanishing divergence and gradients have a vanishing curl. We apply these ideas to discretize div-curl systems. We give error estimates based on the reformulation of these systems into equivalent equations for the potentials. Numerical results illustrate the use of the method on several types of meshes, among which degenerating triangular meshes and non-conforming locally refined meshes.
- Published
- 2007
- Full Text
- View/download PDF
37. KAD12D-a particle-in-cell code based on finite-volume methods
- Author
-
Thomas Westermann, Eric Sonnendrücker, Pascal Omnes, Claus-Dieter Munz, R. Schneider, E. Stein, and U. Voss
- Subjects
Electromagnetic field ,Physics ,symbols.namesake ,Finite volume method ,Quadrilateral ,Maxwell's equations ,symbols ,Context (language use) ,Boundary value problem ,Mechanics ,Statistical physics ,Particle-in-cell ,Time domain - Abstract
Pulsed-power diodes have been developed at the Forschungszentrum Karlsruhe and are the objects of extensive experimental as well as numerical investigations. The electrical behavior of the diodes is substantially influenced by a charged particle flow forming a non-neutral plasma inside these devices. A detailed understanding of the fundamental time-dependent phenomena (e.g., the origin of instabilities) caused by this plasma requires the solution of the Maxwell-Lorentz equations for realistic configurations with a very accurate replica of the border of the domain, where several kinds of boundary conditions are imposed. An attractive method to attack this non-linear equations numerically is the particle-in-cell (PIC) technique. As a preliminary to use the PIC approach, the relevant diode domain has to be covered by an appropriate computational mesh. Therefore, we adopt a grid model based on boundary-fitted coordinates resulting in a quadrilateral mesh zone arrangement with regular data structure. The numerical solution of the Maxwell equations in time domain is obtained by using a finite-volume (FV) approach on a non-rectangular quadrilateral mesh in two space dimensions. A very favorable property of these modern FV schemes consists in the fact that they combine inherent robustness at steep gradients with accurate resolution. In the context of self-consistent charged particle simulation in electromagnetic fields the coupling of a high-resolution FV Maxwell solver with the PIC method is a new way of approximation.
- Published
- 2002
- Full Text
- View/download PDF
38. Enforcing Gauss’ Law in Computational Elec-Tromagnetics Within a Finite-Volume Framework
- Author
-
Pascal Omnes, Rudolf Schneider, and Claus-Dieter Munz
- Subjects
symbols.namesake ,Gauss's law for gravity ,Finite volume method ,Maxwell's equations ,Gauss ,Scattering-matrix method ,Mathematical analysis ,symbols ,Computational electromagnetics ,Gauss's law ,Spurious relationship ,Mathematics - Abstract
The problem of spurious solutions due to the violation of Gauss’ law in computational electromagnetics is avoided by solving an equivalent Maxwell system that takes this constraint into account. A second-order accurate finite-volume method is proposed to solve this linear, first-order strictly hyperbolic reformulated system. Numerical examples demonstrate the validity of this approach.
- Published
- 2001
- Full Text
- View/download PDF
39. A Godunov-type Solver for the Maxwell Equations with Divergence Cleaning
- Author
-
Claus-Dieter Munz, R. Schneider, and Pascal Omnes
- Subjects
Coupling ,Physics ,symbols.namesake ,Charge conservation ,Maxwell's equations ,Degrees of freedom (physics and chemistry) ,symbols ,Applied mathematics ,Polygon mesh ,Solver ,Divergence (statistics) ,Unstructured grid - Abstract
We present a high-resolution finite-volume Godunov-type Maxwell solver for three-dimensional unstructured meshes, based on the purely hyperbolic Maxwell (PHM) system, which is established by introducing two additional degrees of freedom into the evolutionary part of the Maxwell equations and coupling them with the elliptical constraints given by Gaus’ law and the ∇ · B = 0 statement. This model allows for possible errors in the charge conservation equation as may occur in particle-in-cell simulations, and yields approximative solutions of the conventional Maxwell equations. Numerical results demonstrate the relevance of the correction approach when the charge conservation equation is violated.
- Published
- 2001
- Full Text
- View/download PDF
40. New space-time domain decomposition algorithms combined with the Parareal algorithm
- Author
-
Bui, Duc Quang, STAR, ABES, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Université Paris-Nord - Paris XIII, Pascal Omnes, and Caroline Japhet
- Subjects
Équations d’Oseen ,Équations de Stokes ,Parabolic equations ,Pararéel ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Parareal ,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Méthode Relaxation d’Ondes Optimisée ,Optimized Schwarz Waveform Relaxation ,OSWR - Abstract
We study in this thesis space-time domain decomposition methods, in particular, the Parareal method, the Optimized Schwarz Waveform Relaxation (OSWR) method and their coupling, applied to the numerical simulation of parabolic equations and of the Stokes equations. We first propose and analyze a coupling of the Parareal method with the OSWR method. The obtained coupled Parareal-OSWR method is a parallel method, both in the time and space directions, with only few OSWR iterations in the fine propagator in order to reduce computational costs and with a simple coarse propagator deduced from the Backward Euler method. The analysis of this coupled method is presented for a one-dimensional advection-reaction-diffusion equation. For the coupling of Parareal with non-overlapping OSWR, we prove a general convergence result via energy estimates. Numerical results for two-dimensional advection-diffusion problems and for a diffusion equation with strong heterogeneities are presented, to illustrate the performance of the coupled Parareal-OSWR algorithm. We then present also an algorithm that couples Parareal with overlapping OSWR, and we analyze its convergence factor by using the linear convergence of overlapping OSWR that we obtain through a Fourier analysis.For the Stokes equations, we present a well-posed OSWR algorithm and an energy estimate for the convergence of the velocities. Then we show that, in general, the pressure does not converge and we propose a correction against this. A similar strategy based on Fourier transform is performed to get the formulation of the convergence factor. Numerical tests follow to illustrate the performance of the OSWR method with correction. In addition, these results are also extended to get similar ones on the Oseen equation. Finally, we propose the Parareal algorithm and a Parareal-OSWR coupling for the Stokes equations, and prove some of their basic properties, Nous étudions dans cette thèse les méthodes de décomposition de domaine spatio-temporelles, en particulier la méthode Pararéele, la méthode de Relaxation d’Ondes Optimisée (OSWR) et leur couplage, appliqués à la simulation numérique des équations paraboliques et des équations de Stokes. Nous proposons et analysons dans un premier temps un couplage de la méthode Pararéel avec la méthode OSWR. La méthode couplée Pararéel- OSWR obtenue est une méthode parallèle, à la fois en temps et en espace, avec seulement peu d’itérations OSWR dans le propagateur fin afin de réduire les coûts de calcul et avec un propagateur grossier classique déduit de la méthode d’Euler implicite. L’analyse de cette méthode couplée est présentée pour une équation d’advection-réaction-diffusion unidimensionnelle. Pour le couplage de Pararéel avec OSWR sans recouvrement, nous prouvons un résultat de convergence général via des estimations d’énergie. Des résultats numériques pour des problèmes d’advection-diffusion bidimensionnels et pour une équation de diffusion avec de fortes hétérogénéités sont présentés, pour illustrer les performances de l’algorithme couplé Pararéel-OSWR. Nous présentons ensuite également un algorithme qui couple Pararéel avec OSWR avec recouvrement, et nous analysons son facteur de convergence en utilisant la convergence linéaire de OSWR avec recouvrement que nous obtenons par une analyse de Fourier. Pour les équations de Stokes, nous présentons un algorithme OSWR bien posé et une estimation d’énergie pour la convergence des vitesses. Ensuite, nous montrons qu’en général, la pression ne converge pas et nous proposons une correction pour remédier à cela. Une stratégie similaire basée sur la transformée de Fourier est effectuée pour obtenir la formulation du facteur de convergence. Des tests numériques suivent pour illustrer les performances de la méthode OSWR avec correction. De plus, ces résultats sont également étendus pour obtenir des résultats similaires sur l’équation d’Oseen. Enfin, nous proposons l’algorithme Pararéel et un couplage Pararéel-OSWR pour les équations de Stokes, et démontrons certaines de leurs propriétés de base
- Published
- 2021
41. Estimation a posteriori pour la simulation des grandes échelles en mécanique des fluides incompressibles
- Author
-
nassreddine, ghina, Université Sorbonne Paris Nord, Pascal Omnes, and Toni Sayah (co-directeur)
- Subjects
finite element method ,Navier-Stokes ,Simulation des grandes échelles ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Large Eddy Simulation ,méthode des éléments finis ,a posteriori error estimation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Estimation d’erreur a posteriori - Abstract
The direct numerical simulation (DNS) at high Reynolds number of fluid behavior described by the Navier-Stokes equations is particularly costly, if not impossible, since the mesh cells and time step sizes must be adapted to the smallest scales of fluctuations in the velocity and pressure fields that have an impact on the solution. For this reason, techniques such as the large eddy simulation method (LES)are used where the entire scale range is not solved, but the effect of the smallest scales on the resolved scales are modeled. In this thesis, we are interested in the Smagorinksy model, one of the simplest and most widely used among the LES models. This model expresses the effect of the small scales through an additional diffusion term, whose turbulent viscosity coefficient is a function of the resolved scales. We consider this model for the time dependent Navier-Stokes problem in dimension two and for the stationary Navier-Stokes problem in dimensions two and three.These problems are analyzed by introducing the equivalent variational formulations. Then, the corresponding discrete problems based on the finite element method for space discretization and on Euler’s scheme for time discretization are introduced. An a posteriori estimate that measures the error between the solution of the original Navier-Stokes system and the discrete computed solution is established. This estimate only depends on the calculated solution, the geometry of the mesh and the data of the problem ;three types of error indicators are involved : the first is related to the space discretization, the second to the filtering of the LES method and the third to time discretization in the time dependent case and to linearization in the stationary case. Finally, numerical investigations are shown where the whole process is implemented with the FreeFem++ software.; La simulation numérique directe (DNS) à nombre de Reynolds élevé du comportement d’un fluide décrit par les équations de Navier-Stokes est particulièrement coûteuse, voire impossible, puisque les tailles de maille et de pas de temps doivent être adaptées aux plus petites échelles des fluctuations des champs de vitesse et de pression ayant un impact sur la solution. Pour cette raison, on utilise des techniques comme la méthode de simulation des grandes échelles (LES) où l’on n’a pas besoin de résoudre l’intégralité de toutes les échelles, mais où l’effet des plus petites échelles sur les échelles résolues sera modélisé.Dans cette thèse, on s’intéresse au modèle de Smagorinksy, un des modèles les plus simples de LES et parmi les plus utilisés dans les codes de calcul. Il exprime l’effet des petites échelles par un terme de diffusion supplémentaire dont le coefficient de viscosité turbulente est une fonction des échelles résolues.Nous considérons ce modèle pour les équations instationnaires en dimension deux et stationnaires en dimensions deux et trois.On analyse ces problèmes en introduisant les formulations variationnelles équivalentes. Ensuite on introduit les problèmes discrets correspondants en se basant sur la méthode des éléments finis pour la discrétisation en espace et sur le schéma d’Euler pour la discrétisation en temps. On établit une estimation d’erreur a posteriori entre la solution des équations de Navier-Stokes originelles et la solution discrète calculée. Cette estimation ne dépend que de la solution discrète calculée, de la géométrie du maillage et des données du problème ; elle fait apparaître trois types d’indicateurs d’erreur : de discrétisation en espace, de filtrage dû à la méthode LES et de discrétisation en temps dans la cas instationnaire ou de linéarisation dans le cas stationnaire. Enfin, on montre des résultats numériques de validation où l’ensemble est implémenté à l’aide du logiciel FreeFem++.
- Published
- 2020
42. A posteriori error estimates for the large eddy simulation applied to in-compressible fluids
- Author
-
nassreddine, ghina, Université Sorbonne Paris Nord, Pascal Omnes, and Toni Sayah (co-directeur)
- Subjects
finite element method ,Navier-Stokes ,Simulation des grandes échelles ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Large Eddy Simulation ,méthode des éléments finis ,a posteriori error estimation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Estimation d’erreur a posteriori - Abstract
The direct numerical simulation (DNS) at high Reynolds number of fluid behavior described by the Navier-Stokes equations is particularly costly, if not impossible, since the mesh cells and time step sizes must be adapted to the smallest scales of fluctuations in the velocity and pressure fields that have an impact on the solution. For this reason, techniques such as the large eddy simulation method (LES)are used where the entire scale range is not solved, but the effect of the smallest scales on the resolved scales are modeled. In this thesis, we are interested in the Smagorinksy model, one of the simplest and most widely used among the LES models. This model expresses the effect of the small scales through an additional diffusion term, whose turbulent viscosity coefficient is a function of the resolved scales. We consider this model for the time dependent Navier-Stokes problem in dimension two and for the stationary Navier-Stokes problem in dimensions two and three.These problems are analyzed by introducing the equivalent variational formulations. Then, the corresponding discrete problems based on the finite element method for space discretization and on Euler’s scheme for time discretization are introduced. An a posteriori estimate that measures the error between the solution of the original Navier-Stokes system and the discrete computed solution is established. This estimate only depends on the calculated solution, the geometry of the mesh and the data of the problem ;three types of error indicators are involved : the first is related to the space discretization, the second to the filtering of the LES method and the third to time discretization in the time dependent case and to linearization in the stationary case. Finally, numerical investigations are shown where the whole process is implemented with the FreeFem++ software.; La simulation numérique directe (DNS) à nombre de Reynolds élevé du comportement d’un fluide décrit par les équations de Navier-Stokes est particulièrement coûteuse, voire impossible, puisque les tailles de maille et de pas de temps doivent être adaptées aux plus petites échelles des fluctuations des champs de vitesse et de pression ayant un impact sur la solution. Pour cette raison, on utilise des techniques comme la méthode de simulation des grandes échelles (LES) où l’on n’a pas besoin de résoudre l’intégralité de toutes les échelles, mais où l’effet des plus petites échelles sur les échelles résolues sera modélisé.Dans cette thèse, on s’intéresse au modèle de Smagorinksy, un des modèles les plus simples de LES et parmi les plus utilisés dans les codes de calcul. Il exprime l’effet des petites échelles par un terme de diffusion supplémentaire dont le coefficient de viscosité turbulente est une fonction des échelles résolues.Nous considérons ce modèle pour les équations instationnaires en dimension deux et stationnaires en dimensions deux et trois.On analyse ces problèmes en introduisant les formulations variationnelles équivalentes. Ensuite on introduit les problèmes discrets correspondants en se basant sur la méthode des éléments finis pour la discrétisation en espace et sur le schéma d’Euler pour la discrétisation en temps. On établit une estimation d’erreur a posteriori entre la solution des équations de Navier-Stokes originelles et la solution discrète calculée. Cette estimation ne dépend que de la solution discrète calculée, de la géométrie du maillage et des données du problème ; elle fait apparaître trois types d’indicateurs d’erreur : de discrétisation en espace, de filtrage dû à la méthode LES et de discrétisation en temps dans la cas instationnaire ou de linéarisation dans le cas stationnaire. Enfin, on montre des résultats numériques de validation où l’ensemble est implémenté à l’aide du logiciel FreeFem++.
- Published
- 2020
43. Analyse mathématique de schémas volume finis pour la simulation des l'écoulements quasi-géostrophiques à bas nombre de Froude
- Author
-
Do, Minh Hieu, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), LAGA, Université Paris 13, Pascal Omnes, Emmanuel Audusse, and Yohan Penel
- Subjects
équilibre géostrophique ,bas nombre de Froude ,schéma de Godunov ,méthode de volumes finis ,finite volume method ,système hyperbolique ,low Froude number ,force de Coriolis ,schéma équilibre ,Godunov scheme ,numerical diffusion ,Geostrophic equilibrium ,hyperbolic system ,well-balanced scheme ,diffusion numérique ,[MATH]Mathematics [math] ,Coriolis force ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
The shallow water system plays an important role in the numerical simulation of oceanic models, coastal flows and dam-break floods. Several kinds of source terms can be taken into account in this model, such as the influence of bottom topography, Manning friction effects and Coriolis force. For large scale oceanic phenomena, the Coriolis force due to the Earth's rotation plays a central role since the atmospheric or oceanic circulations are frequently observed around the so-called geostrophic equilibrium which corresponds to the balance between the pressure gradient and the Coriolis source term. The ability of numerical schemes to well capture thelake at rest, has been widely studied. However, the geostrophic equilibrium issue, including the divergence free constraint on the velocity, is much more complex and only few works have been devoted to its preservation. In this manuscript, we design finite volume schemes that preserve the discrete geostrophic equilibrium in order to improve significantly the accuracy of numerical simulations of perturbations around this equilibrium. We first develop collocated and staggered schemes on rectangular and triangular meshes for a linearized model of the original shallow water system. The crucial common point of the various methods is to adapt and combine several strategies known as the Apparent Topography, the Low Mach and the Divergence Penalisation methods, in order to handle correctly the numerical diffusions involved in the schemes on different cell geometries, so that they do not destroy geostrophic equilibria. Finally, we extend these strategies to the non-linear case and show convincing numerical results.; Le système de Saint-Venant joue un rôle important dans la simulation de modèles océaniques, d'écoulements côtiers et de ruptures de barrages. Plusieurs sortes de termes sources peuvent être pris en compte dans ce modèle, comme la topographie, les effets de friction de Manning et la force de Coriolis. Celle-ci joue un rôle central dans les phénomènes à grande échelle spatiale car les circulations atmosphériques ou océaniques sont souvent observées autour de l'équilibre géostrophique qui correspond à l'équilibre du gradient de pression et de cette force. La capacité des schémas numériques à bien reproduire le lac au repos a été largement étudiée; en revanche, la question de l'équilibre géostrophique (incluant la contrainte de vitesse à divergence nulle) est beaucoup plus complexe et peu de travaux lui ont été consacrés.Dans cette thèse, nous concevons des schémas volumes finis qui préservent les équilibres géostrophiques discrets dans le but d'améliorer significativement la précision des simulations numériques de perturbations autour de ces équilibres. Nous développons tout d'abord des schémas colocalisés et décalés sur des maillages rectangulaires ou triangulaires pour une linéarisation du modèle d'origine. Le point commun décisif de ces méthodes est d'adapter et de combiner les stratégies dites "topographie apparente", "bas Mach" et "pénalisation de divergence" pour contrôler l'effet de la diffusion numérique contenue dans les schémas, de telle sorte qu'elle ne détruise pas les équilibres géostrophiques. Enfin, nous étendons ces stratégies au cas non-linéaire et montrons des résultats prometteurs.
- Published
- 2017
44. Analysis of finite volume schemes for the quasi-geostrophic flows at low Froude number
- Author
-
Do, Minh Hieu, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Université Sorbonne Paris Cité, and Pascal Omnes
- Subjects
Geostrophic equilibrium ,Équilibre géostrophique ,Numerical diffusion ,Shéma de Godunov ,Bas nombre de Froude ,Diffusion numérique ,Low Froude number ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Godunov scheme - Abstract
Le système de Saint-Venant joue un rôle important dans la simulation de modèles océaniques, d’écoulements côtiers et de ruptures de barrages. Plusieurs sortes de termes sources peuvent être pris en compte dans ce modèle, comme la topographie, les effets de friction de Manning et la force de Coriolis. Celle-ci joue un rôle central dans les phénomènes à grande échelle spatiale car les circulations atmosphériques ou océaniques sont souvent observées autour de l’équilibre géostrophique qui correspond à l’équilibre du gradient de pression et de cette force. La capacité des schémas numériques à bien reproduire le lac au repos a été largement étudiée; en revanche, la question de l’équilibre géostrophique (incluant la contrainte de vitesse à divergence nulle) est beaucoup plus complexe et peu de travaux lui ont été consacrés. Dans cette thèse, nous concevons des schémas volumes finis qui préservent les équilibres géostrophiques discrets dans le but d’améliorer significativement la précision des simulations numériques de perturbations autour de ces équilibres. Nous développons tout d’abord des schémas colocalisés et décalés sur des maillages rectangulaires ou triangulaires pour une linéarisation du modèle d’origine. Le point commun décisif de ces méthodes est d’adapter et de combiner les stratégies dites "topographie apparente", "bas Mach" et "pénalisation de divergence" pour contrôler l’effet de la diffusion numérique contenue dans les schémas, de telle sorte qu’elle ne détruise pas les équilibres géostrophiques. Enfin, nous étendons ces stratégies au cas non-linéaire et montrons des résultats prometteurs.; The shallow water system plays an important role in the numerical simulation of oceanic models, coastal flows and dam-break floods. Several kinds of source terms can be taken into account in this model, such as the influence of bottom topography, Manning friction effects and Coriolis force. For large scale oceanic phenomena, the Coriolis force due to the Earth’s rotation plays a central role since the atmospheric or oceanic circulations are frequently observed around the so-called geostrophic equilibrium which corresponds to the balance between the pressure gradient and the Coriolis source term. The ability of numerical schemes to well capture the lake at rest, has been widely studied. However, the geostrophic equilibrium issue, including the divergence free constraint on the velocity, is much more complex and only few works have been devoted to its preservation. In this manuscript, we design finite volume schemes that preserve the discrete geostrophic equilibriuminordertoimprovesignificantlytheaccuracyofnumericalsimulationsofperturbations around this equilibrium. We first develop collocated and staggered schemes on rectangular and triangular meshes for a linearized model of the original shallow water system. The crucial common point of the various methods is to adapt and combine several strategies known as the Apparent Topography, the Low Mach and the Divergence Penalisation methods, in order to handle correctly the numerical diffusions involved in the schemes on different cell geometries, so that they do not destroy geostrophic equilibria. Finally, we extend these strategies to the non-linear case and show convincing numerical results.
- Published
- 2017
45. Mathematical analysis of finite volume schemes for the simulation of quasi-geostrophic flows at low Froude number
- Author
-
Do, Minh Hieu, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), LAGA, Université Paris 13, Pascal Omnes, Emmanuel Audusse, Yohan Penel, and Do, Minh hieu
- Subjects
équilibre géostrophique ,bas nombre de Froude ,schéma de Godunov ,méthode de volumes finis ,finite volume method ,système hyperbolique ,[MATH] Mathematics [math] ,low Froude number ,force de Coriolis ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,schéma équilibre ,Godunov scheme ,numerical diffusion ,Geostrophic equilibrium ,hyperbolic system ,well-balanced scheme ,diffusion numérique ,[MATH]Mathematics [math] ,Coriolis force ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
The shallow water system plays an important role in the numerical simulation of oceanic models, coastal flows and dam-break floods. Several kinds of source terms can be taken into account in this model, such as the influence of bottom topography, Manning friction effects and Coriolis force. For large scale oceanic phenomena, the Coriolis force due to the Earth's rotation plays a central role since the atmospheric or oceanic circulations are frequently observed around the so-called geostrophic equilibrium which corresponds to the balance between the pressure gradient and the Coriolis source term. The ability of numerical schemes to well capture thelake at rest, has been widely studied. However, the geostrophic equilibrium issue, including the divergence free constraint on the velocity, is much more complex and only few works have been devoted to its preservation. In this manuscript, we design finite volume schemes that preserve the discrete geostrophic equilibrium in order to improve significantly the accuracy of numerical simulations of perturbations around this equilibrium. We first develop collocated and staggered schemes on rectangular and triangular meshes for a linearized model of the original shallow water system. The crucial common point of the various methods is to adapt and combine several strategies known as the Apparent Topography, the Low Mach and the Divergence Penalisation methods, in order to handle correctly the numerical diffusions involved in the schemes on different cell geometries, so that they do not destroy geostrophic equilibria. Finally, we extend these strategies to the non-linear case and show convincing numerical results., Le système de Saint-Venant joue un rôle important dans la simulation de modèles océaniques, d'écoulements côtiers et de ruptures de barrages. Plusieurs sortes de termes sources peuvent être pris en compte dans ce modèle, comme la topographie, les effets de friction de Manning et la force de Coriolis. Celle-ci joue un rôle central dans les phénomènes à grande échelle spatiale car les circulations atmosphériques ou océaniques sont souvent observées autour de l'équilibre géostrophique qui correspond à l'équilibre du gradient de pression et de cette force. La capacité des schémas numériques à bien reproduire le lac au repos a été largement étudiée; en revanche, la question de l'équilibre géostrophique (incluant la contrainte de vitesse à divergence nulle) est beaucoup plus complexe et peu de travaux lui ont été consacrés.Dans cette thèse, nous concevons des schémas volumes finis qui préservent les équilibres géostrophiques discrets dans le but d'améliorer significativement la précision des simulations numériques de perturbations autour de ces équilibres. Nous développons tout d'abord des schémas colocalisés et décalés sur des maillages rectangulaires ou triangulaires pour une linéarisation du modèle d'origine. Le point commun décisif de ces méthodes est d'adapter et de combiner les stratégies dites "topographie apparente", "bas Mach" et "pénalisation de divergence" pour contrôler l'effet de la diffusion numérique contenue dans les schémas, de telle sorte qu'elle ne détruise pas les équilibres géostrophiques. Enfin, nous étendons ces stratégies au cas non-linéaire et montrons des résultats prometteurs.
- Published
- 2017
46. Analyse mathématique de schémas volume finis pour la simulation des écoulements quasi-géostrophiques à bas nombre de Froude
- Author
-
Do, Minh Hieu, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Université Sorbonne Paris Cité, and Pascal Omnes
- Subjects
Geostrophic equilibrium ,Équilibre géostrophique ,Numerical diffusion ,Shéma de Godunov ,Bas nombre de Froude ,Diffusion numérique ,Low Froude number ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Godunov scheme - Abstract
Le système de Saint-Venant joue un rôle important dans la simulation de modèles océaniques, d’écoulements côtiers et de ruptures de barrages. Plusieurs sortes de termes sources peuvent être pris en compte dans ce modèle, comme la topographie, les effets de friction de Manning et la force de Coriolis. Celle-ci joue un rôle central dans les phénomènes à grande échelle spatiale car les circulations atmosphériques ou océaniques sont souvent observées autour de l’équilibre géostrophique qui correspond à l’équilibre du gradient de pression et de cette force. La capacité des schémas numériques à bien reproduire le lac au repos a été largement étudiée; en revanche, la question de l’équilibre géostrophique (incluant la contrainte de vitesse à divergence nulle) est beaucoup plus complexe et peu de travaux lui ont été consacrés. Dans cette thèse, nous concevons des schémas volumes finis qui préservent les équilibres géostrophiques discrets dans le but d’améliorer significativement la précision des simulations numériques de perturbations autour de ces équilibres. Nous développons tout d’abord des schémas colocalisés et décalés sur des maillages rectangulaires ou triangulaires pour une linéarisation du modèle d’origine. Le point commun décisif de ces méthodes est d’adapter et de combiner les stratégies dites "topographie apparente", "bas Mach" et "pénalisation de divergence" pour contrôler l’effet de la diffusion numérique contenue dans les schémas, de telle sorte qu’elle ne détruise pas les équilibres géostrophiques. Enfin, nous étendons ces stratégies au cas non-linéaire et montrons des résultats prometteurs.; The shallow water system plays an important role in the numerical simulation of oceanic models, coastal flows and dam-break floods. Several kinds of source terms can be taken into account in this model, such as the influence of bottom topography, Manning friction effects and Coriolis force. For large scale oceanic phenomena, the Coriolis force due to the Earth’s rotation plays a central role since the atmospheric or oceanic circulations are frequently observed around the so-called geostrophic equilibrium which corresponds to the balance between the pressure gradient and the Coriolis source term. The ability of numerical schemes to well capture the lake at rest, has been widely studied. However, the geostrophic equilibrium issue, including the divergence free constraint on the velocity, is much more complex and only few works have been devoted to its preservation. In this manuscript, we design finite volume schemes that preserve the discrete geostrophic equilibriuminordertoimprovesignificantlytheaccuracyofnumericalsimulationsofperturbations around this equilibrium. We first develop collocated and staggered schemes on rectangular and triangular meshes for a linearized model of the original shallow water system. The crucial common point of the various methods is to adapt and combine several strategies known as the Apparent Topography, the Low Mach and the Divergence Penalisation methods, in order to handle correctly the numerical diffusions involved in the schemes on different cell geometries, so that they do not destroy geostrophic equilibria. Finally, we extend these strategies to the non-linear case and show convincing numerical results.
- Published
- 2017
47. Equilibrated stress reconstructions for linear elasticity problems with application to a posteriori error analysis
- Author
-
Alexandre Ern, Daniele Antonio Di Pietro, Rita Riedlbeck, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la mécanique et Applications industrielles (IMSIA - UMR 9219), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Simulation for the Environment: Reliable and Efficient Numerical Algorithms (SERENA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Clément Cancès, Pascal Omnes, and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-EDF R&D (EDF R&D)
- Subjects
Arnold–Falk–Winther finite element ,Cauchy stress tensor ,Arnold–Winther finite element ,Linear elasticity ,linear elasticity ,Geometry ,010103 numerical & computational mathematics ,Mixed finite element method ,01 natural sciences ,Symmetry (physics) ,Finite element method ,Mathematics::Numerical Analysis ,010101 applied mathematics ,Constraint (information theory) ,Stress (mechanics) ,Applied mathematics ,A priori and a posteriori ,equilibrated stress reconstruction ,0101 mathematics ,a posteriori error estimate ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; We present an a posteriori error estimate for the linear elasticity problem. The estimate is based on an equilibrated reconstruction of the Cauchy stress tensor, which is obtained from mixed finite element solutions of local Neumann problems. We propose two different reconstructions, one using Arnold–Winther mixed finite element spaces providing a symmetric stress tensor and one using Arnold–Falk– Winther mixed finite element spaces with a weak symmetry constraint. The performance of the estimate is illustrated on a numerical test with analytical solution.
- Published
- 2017
- Full Text
- View/download PDF
48. A splitting scheme for three-phase flow models
- Author
-
Hamza Boukili, Jean-Marc Hérard, EDF (EDF), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), and Clément Cancès - Pascal Omnes
- Subjects
Computer science ,Numerical analysis ,Three-phase flow ,Three phase flow ,01 natural sciences ,vapour explosion ,010305 fluids & plasmas ,010101 applied mathematics ,Riemann hypothesis ,symbols.namesake ,Entropy inequality ,0103 physical sciences ,symbols ,Applied mathematics ,shocks ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0101 mathematics ,Data flow model ,entropy ,finite volumes ,Step method - Abstract
International audience; A fractional step method that provides approximate solutions of a three-phase flow model is presented herein. The three-fluid model enables to handle smooth or discontinuous unsteady solutions. The numerical method is grounded on the use of the entropy inequality that governs smooth solutions of the set of PDEs. The evolution step relies on an explicit scheme, while implicit schemes are embedded in the relaxation step. The main properties of the scheme are given. Numerical approximations of two basic Riemann problems are eventually presented.
- Published
- 2017
- Full Text
- View/download PDF
49. A nonconforming high-order method for nonlinear poroelasticity
- Author
-
Michele Botti, Daniele Antonio Di Pietro, Pierre Sochala, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Labex NUMEV (ANR-10-LABX-20) ref. 2014-2-006, HHOMM (ref. ANR-15-CE40-0005), Clément Cancès, Pascal Omnes, and ANR-15-CE40-0005,HHOMM,Méthodes hybrides d'ordre élevé sur maillages polyédriques(2015)
- Subjects
Discretization ,Poromechanics ,Mathematical analysis ,010103 numerical & computational mathematics ,Hybrid High-Order ,Space (mathematics) ,01 natural sciences ,65M08, 65N30, 74B20, 76S05 ,010101 applied mathematics ,Nonlinear system ,Nonlinear poroelasticity ,Operator (computer programming) ,Flow (mathematics) ,Discontinuous Galerkin method ,General meshes ,Polygon mesh ,0101 mathematics ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics ,discontinuous Galerkin - Abstract
International audience; In this work, we introduce a novel algorithm for the quasi-static nonlin-ear poroelasticity problem describing Darcian flow in a deformable saturated porous medium. The nonlinear elasticity operator is discretized using a Hybrid High-Order method while the heterogeneous diffusion part relies on a Symmetric Weighted Interior Penalty discontinuous Galerkin scheme. The method is valid in two and three space dimensions, delivers an inf-sup stable discretization on general meshes including polyhedral elements and nonmatching interfaces, allows arbitrary approximation orders, and has a reduced cost thanks to the possibility of statically condensing a large subset of the unknowns for linearized versions of the problem. Moreover, the proposed construction can handle rough variations of the permeability coefficient and vanishing specific storage coefficient. Numerical tests demonstrating the performance of the method are provided.
- Published
- 2017
- Full Text
- View/download PDF
50. A Fractional Step Method to Simulate Mixed Flows in Pipes with a Compressible Two-Layer Model
- Author
-
Jean-Marc Hérard, Stéphane Gerbi, Charles Demay, Christian Bourdarias, Benoît de Laage de Meux, EDF (EDF), Laboratoire de Mathématiques (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Clément Cancès - Pascal Omnes, and Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematical optimization ,010102 general mathematics ,Two layer ,01 natural sciences ,010101 applied mathematics ,mixed flow ,Test case ,Mixed flow ,Two-layer model ,Convergence (routing) ,Compressibility ,Applied mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,implicit-explicit scheme ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0101 mathematics ,Step method ,Mathematics - Abstract
International audience; The so-called mixed flows in pipes include two-phase stratified regimes as well as single-phase pressurized regimes with transitions. It is proposed to handle those configurations numerically with the compressible two-layer model developed in [7]. Thus, a fractional step method is proposed to deal explicitly with the slow propagation phenomena and implicitly with the fast ones. It results in a large time-step scheme accurate in both regimes. Numerical experiments are performed including convergence results and academical test cases.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.