Back to Search Start Over

Optimal absorption of acoustical waves by a boundary

Authors :
Pascal Omnes
Frédéric Magoulès
Thi Phuong Kieu Nguyen
Anna Rozanova-Pierrat
Mathématiques et Informatique pour la Complexité et les Systèmes (MICS)
CentraleSupélec
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
CentraleSupélec-Université Paris-Saclay
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Funding: This work was funded by the Pôle de Compétitivité Systematic (France) under thegrant OpenGPU, and the Pôle de Compétitivité CapDigital (France) under the grant Callisto-Sari.
Source :
SIAM Journal on Control and Optimization, SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2021, 59 (1), pp.561-583. ⟨10.1137/20M1327239⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

In the aim to find the simplest and most efficient shape of a noise absorbing wall to dissipate the acoustical energy of a sound wave, we consider a frequency model described by the Helmholtz equation with a damping on the boundary. The well-posedness of the model is shown in a class of domains with d-set boundaries (N -- 1 $\le$ d < N). We introduce a class of admissible Lipschitz boundaries, in which an optimal shape of the wall exists in the following sense: We prove the existence of a Radon measure on this shape, greater than or equal to the usual Lebesgue measure, for which the corresponding solution of the Helmholtz problem realizes the infimum of the acoustic energy defined with the Lebesgue measure on the boundary. If this Radon measure coincides with the Lebesgue measure, the corresponding solution realizes the minimum of the energy. For a fixed porous material, considered as an acoustic absorbent, we derive the damping parameters of its boundary from the corresponding time-dependent problem described by the damped wave equation (damping in volume).<br />SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, In press

Details

Language :
English
ISSN :
03630129 and 10957138
Database :
OpenAIRE
Journal :
SIAM Journal on Control and Optimization, SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2021, 59 (1), pp.561-583. ⟨10.1137/20M1327239⟩
Accession number :
edsair.doi.dedup.....1e2510106795ffe147242156d70622e2
Full Text :
https://doi.org/10.1137/20M1327239⟩