Back to Search
Start Over
A Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Laplace Equation
- Source :
- SIAM Journal on Numerical Analysis, SIAM Journal on Numerical Analysis, 2009, 47 (4), pp.2782--2807. ⟨10.1137/080735047⟩, SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2009, 47 (4), pp.2782--2807. ⟨10.1137/080735047⟩
- Publication Year :
- 2009
- Publisher :
- Society for Industrial & Applied Mathematics (SIAM), 2009.
-
Abstract
- International audience; An efficient and fully computable a posteriori error bound is derived for the discrete duality finite volume discretization of the Laplace equation on very general twodimensional meshes. The main ingredients are the equivalence of this method with a finite element like scheme and tools from the finite element framework. Numerical tests are performed with a stiff solution on highly nonconforming locally refined meshes and with a singular solution on triangular meshes.
- Subjects :
- MathematicsofComputing_NUMERICALANALYSIS
Duality (optimization)
010103 numerical & computational mathematics
01 natural sciences
Mathematics::Numerical Analysis
Singular solution
AMS 65N15, 65N30
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
Calculus
Applied mathematics
Polygon mesh
0101 mathematics
ComputingMethodologies_COMPUTERGRAPHICS
Mathematics
Laplace's equation
Numerical Analysis
Finite volume method
Applied Mathematics
Numerical analysis
Mixed finite element method
discrete duality
16. Peace & justice
a posteriori error estimation
Finite element method
010101 applied mathematics
Computational Mathematics
finite volume
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
nonconforming meshes
Subjects
Details
- ISSN :
- 10957170 and 00361429
- Volume :
- 47
- Database :
- OpenAIRE
- Journal :
- SIAM Journal on Numerical Analysis
- Accession number :
- edsair.doi.dedup.....afd10a0c10f35f76e034129b6676cf2a
- Full Text :
- https://doi.org/10.1137/080735047