Back to Search Start Over

Construction of modified Godunov type schemes accurate at any Mach number for the compressible Euler system

Authors :
Stéphane Dellacherie
Pascal Omnes
Pierre-Arnaud Raviart
Jonathan Jung
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP)
Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)
Computational Approximation with discontinous Galerkin methods and compaRison with Experiments (CAGIRE)
Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
Service Fluide numériques, Modélisation et Etudes (SFME)
Département de Modélisation des Systèmes et Structures (DM2S)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
Source :
Mathematical Models and Methods in Applied Sciences, Mathematical Models and Methods in Applied Sciences, 2016, ⟨10.1142/S0218202516500603⟩, Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2016, ⟨10.1142/S0218202516500603⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; This article is composed of three self-consistent chapters that can be read independently of each other. In Chapter 1, we define and we analyze the low Mach number problem through a linear analysis of a perturbed linear wave equation. Then, we show how to modify Godunov type schemes applied to the linear wave equation to make this scheme accurate at any Mach number. This allows to define an all Mach correction and to propose a linear all Mach Godunov scheme for the linear wave equation. In Chapter 2, we apply the all Mach correction proposed in Chapter 1 to the case of the non-linear barotropic Euler system when the Godunov type scheme is a Roe scheme. A linear stability result is proposed and a formal asymptotic analysis justifies the construction in this non-linear case by showing how this construction is related with the linear analysis of Chapter 1. At last, we apply in Chapter 3 the all Mach correction proposed in Chapter 1 in the case of the full Euler compressible system. Numerous numerical results proposed in Chapters 1, 2 and 3 justify the theoretical results and show that the obtained all Mach Godunov type schemes are both accurate and stable for all Mach numbers. We also underline that the proposed approach can be applied to other schemes and allows to justify other existing all Mach schemes.

Details

Language :
English
ISSN :
02182025 and 17936314
Database :
OpenAIRE
Journal :
Mathematical Models and Methods in Applied Sciences, Mathematical Models and Methods in Applied Sciences, 2016, ⟨10.1142/S0218202516500603⟩, Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2016, ⟨10.1142/S0218202516500603⟩
Accession number :
edsair.doi.dedup.....aba700eec4968f9d4caf9138ce285c4d
Full Text :
https://doi.org/10.1142/S0218202516500603⟩