Back to Search Start Over

An a Posteriori Error Estimation for the Discrete Duality Finite Volume Discretization of the Stokes Equations

Authors :
Anh Ha Le
Pascal Omnes
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
Département de Modélisation des Systèmes et Structures (DM2S)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
Source :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2015, 49 (3), pp.663-693. ⟨10.1051/m2an/2014057⟩, ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 49 (3), pp.663-693. ⟨10.1051/m2an/2014057⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; We derive an a posteriori error estimation for the discrete duality finite volume (DDFV) discretization of the stationary Stokes equations on very general twodimensional meshes, when a penalty term is added in the incompressibility equation to stabilize the variational formulation. Two different estimators are provided: one for the error on the velocity and one for the error on the pressure. They both include a contribution related to the error due to the stabilization of the scheme, and a contribution due to the discretization itself. The estimators are globally upper as well as locally lower bounds for the errors of the DDFV discretization. They are fully computable as soon as a lower bound for the inf-sup constant is available. Numerical experiments illustrate the theoretical results and we especially consider the influence of the penalty parameter on the error for a fixed mesh and also of the mesh size for a fixed value of the penalty parameter. A global error reducing strategy that mixes the decrease of the penalty parameter and adaptive mesh refinement is described.

Details

Language :
English
ISSN :
0764583X and 12903841
Database :
OpenAIRE
Journal :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2015, 49 (3), pp.663-693. ⟨10.1051/m2an/2014057⟩, ESAIM: Mathematical Modelling and Numerical Analysis, 2015, 49 (3), pp.663-693. ⟨10.1051/m2an/2014057⟩
Accession number :
edsair.doi.dedup.....697f4393c96c2f8c35ae8d6b6a2ade8d
Full Text :
https://doi.org/10.1051/m2an/2014057⟩