Back to Search Start Over

On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes

Authors :
Pascal Omnes
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13)
Service Fluide numériques, Modélisation et Etudes (SFME)
Département de Modélisation des Systèmes et Structures (DM2S)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
Source :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2011, 45 (4), pp.627--650. ⟨10.1051/m2an/2010068⟩, ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45 (4), pp.627--650. ⟨10.1051/m2an/2010068⟩
Publication Year :
2011
Publisher :
HAL CCSD, 2011.

Abstract

International audience; Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken $P^1$ function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the~$L^2$ norm, under the sufficient condition that the right-hand side of the Laplace equation belongs to~$H^1(\Omega)$.

Details

Language :
English
ISSN :
0764583X and 12903841
Database :
OpenAIRE
Journal :
ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2011, 45 (4), pp.627--650. ⟨10.1051/m2an/2010068⟩, ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45 (4), pp.627--650. ⟨10.1051/m2an/2010068⟩
Accession number :
edsair.doi.dedup.....ca4ed751ec3faafbbe6b3ab7c1e87dca
Full Text :
https://doi.org/10.1051/m2an/2010068⟩