Back to Search Start Over

A posteriori error estimates for the large eddy simulation applied to stationary Navier–Stokes equations

Authors :
Pascal Omnes
Toni Sayah
Ghina Nassreddine
Université Saint-Joseph de Beyrouth (USJ)
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Service de Thermo-hydraulique et de Mécanique des Fluides (STMF)
Département de Modélisation des Systèmes et Structures (DM2S)
CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Source :
Numerical Methods for Partial Differential Equations, Numerical Methods for Partial Differential Equations, 2022, 38 (5), pp.1468-1498. ⟨10.1002/num.22850⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; In this paper, we study in two and three space dimensions, the a posteriori error estimates for the Large Eddy Simulation applied to the Navier-Stokes system. We begin by introducing the Navier-Stokes and the corresponding Large Eddy Simulation (LES) equations. Then we introduce the corresponding discrete problem based on the finite element method. We establish an a posteriori error estimation with three types of error indicators related to the filter of the LES method, to the discretization and to the linearization. Finally, numerical investigations are shown and discussed.

Details

Language :
English
ISSN :
0749159X and 10982426
Database :
OpenAIRE
Journal :
Numerical Methods for Partial Differential Equations, Numerical Methods for Partial Differential Equations, 2022, 38 (5), pp.1468-1498. ⟨10.1002/num.22850⟩
Accession number :
edsair.doi.dedup.....dd2f3279b3efbd189415f0f5b493194d
Full Text :
https://doi.org/10.1002/num.22850⟩