Hemoblastoze su skupina bolesti koje nastaju zbog malignog bujanja stanica krvotvornog sustava. U oboljelom organizmu zbivaju se mnogostruke metaboličke promjene: snažna glikogenoliza, glikoliza, reciklaža laktata te glukoneogeneza iz bjelančevina. Navedene metaboličke promjene odražavaju se na aktivnost određenih enzima priključenih tim metaboličkim putevima. Stoga biokemijske i histokemijske tehnike mjerenja aktivnosti enzima mogu poslužiti za utvrđivanje malignosti. Uz promjene aktivnosti, u neoplazmama su prisutne i promjene izoenzimskog profila. Pojavljuju se novi izoenzimi karakteristični za fetalna tkiva koji često bolje iskorištavaju metaboličke supstrate, a poslijedica su promjena u genomu stanice i dediferencijacije stanica u malignim neoplazijama. Kako citratni ciklus povezuje sve spomenute metaboličke puteve s respiracijskim lancem u svrhu sinteze energetski bogatih molekula ATP-a, za očekivati je da će se metaboličke promjene u oboljelih od hemoblastoza odraziti na aktivnost i izoenzimski profil citoplazmatske malat dehidrogenaze (cMDH), enzima malat aspartat sustava za transport reduciranih ekvivalenata iz citoplazme u mitohondrij. Budući da su dosadašnje spoznaje o cMDH u serumu oboljelih od hemoblastoza oskudne, ovim radom istražili smo aktivnost i kinetičke konstante tog enzima, s ciljem da ustanovimo da li se znane genske aberacije i metaboličke promjene odražavaju na aktivnost i kinetičke konstante cMDH, odnosno izoenzimski profil tog enzima. U radu je istražena aktivnost malat dehidrogenaze u serumu zdravih te od hemoblastoza oboljelih osoba. Također su izmjerene kinetičke konstante: Michaelisova konstanata (Km) te maksimalna brzina enzima (Vmax). U istraživanju su bili uključeni slijedeći tipovi hemoblastoza: akutna limfatična leukemija (ALL), kronična limfatična leukemija (KLL), akutna mijeloična leukemija (AML), kronična mijeloična leukemija (KML), ne-Hodgkin limfom (NHL), plazmocitom (PL) i Hodgkinova bolest (MH). Za određivanje aktivnosti malat dehidrogenaze u serumu korištena je reakcija redukcije oksalacetata u malat u nazočnosti reduciranog koenzima 1 (NADH). Brzina oksidacije NADH mjerena je spektrofotometrijski, a aktivnost enzima izražena je u ľmol transformiranog supstrata u minuti/L pri 25°C. Aktivnost MDH mjerena je pri različitim koncentracijama supstrata i to: 4,9; 3,3; 1,65; 0,83; 0,66; 0,49; 0,33; 0,165; 0,083; 0,066; 0,049; i 0,033 mmol/L. Dobivene vrijednosti korištene su za crtanje Michaelisovih krivulja, te Lineweaver-Burk dijagrama i dijagrama po Wilkinsonu, iz kojih su očitane i izračunate vrijednosti maksimalne brzine enzima te Michaelisove konstante. Ukupna aktivnost malat dehidrogenaze u kontrolnim serumima i u serumima oboljelih kretala se u fiziološkim granicama. Isto tako, nije bilo značajnije razlike u ukupnoj aktivnosti MDH između kontrolnih seruma i seruma oboljelih, izuzev u slučaju kronične limfatične leukemije gdje je utvrđen statistički značajan porast ukupne aktivnosti enzima u serumu. Ispitivanjem zavisnosti aktivnosti MDH o koncentraciji supstrata, pri nizu koncentracija supstrata od 0,033 do 4,9 mmol/L, u kontrolnim serumima kao i u serumima oboljelih nije ustanovljena inhibicija supstratom niti na jednoj korištenoj koncentraciji. Stoga možemo reći da je u svim ispitivanim uzorcima seruma bila prisutna samo citoplazmatska forma malat dehidrogenaze. U kontrolnim serumima Michaelisova krivulja aktivnosti citoplazmatske malat dehidrogenaze imala je pravilan oblik a njezinom Lineweaver-Burk linearizacijom dobven je pravac iz kojeg su očitane i zračunate vrijednosti Vmax i Km. Vrijednost Michaelisove konstante podudarala se s referentnim vrijednostima Km za cMDH u serumima zdravih ljudi. Iz navedenih rezultata možemo zaključiti da je u kontrolnim serumima bila prisutna jedna forma koja je katalizirala supstrat, oksalacetat, s određenim i karakterističnim afinitetom. U serumima oboljelih od ALL, AML, NHL, PL i MH Michaelisova krivulja aktivnosti cMDH razlikovala se od one u kontrolnim serumima. Lineweaver-Burk linearizacijom Michaelisove krivulje dobivena su dva pravca različitog nagiba, iz kojih su izračunate dvije različite vrijednosti maksimalnih brzina te dvije različite Michaelisove konstante. Jedna Michaelisova konstanta podudarala se s onom u kontrolnim serumima, dok je druga bila i do 11 puta veća od one u kontrola. Na temelju tih rezultata zaključili smo da su u ispitivanim serumima oboljelih bila prisutna dva izoenzima cMDH koji imaju različiti afinitet prema supstratu. Po odnosu prema supstratu, jedan izoenzim bio je identičan enzimu koji se nalazi u serumima zdravih osoba, dok je drugi, novi izoenzim, slabije iskorištavao oksalacetat, odnosno bile su mu potrebne puno veće koncentracije supstrata da bi postigao maksimalnu brzinu. Najvjerojatnije, pojava novog izoenzima bila je posljedica dediferencijacije stanica u hemoblastozama, dakle reaktivacije gena koji su bili prisutni tijekom fetalnog razdoblja. U serumima oboljelih od KML utvrđen je samo jedan oblik cMDH čije su se kinetičke konstante podudarale s onima u kontrolnim serumima. Razlog tome potražili smo u morfološkim oblicima mijelocita koji su u KML na višem stupnju diferencijacije nego li u akutnim oblicima te bolesti. U serumima nekolicine oboljelih od KLL ustanovljena su dva izoenzima cMDH, dok je u ostalim serumima oboljelih od te bolesti utvrđen samo jedan izoenzim kinetičkih konstanti jednakih izoenzimu u serumima zdravih osoba. Vjerojatno je razlog takovom nalazu kao i u KML bio stupanj diferencijacije stanica malignog klona. Sažimajući sve dobivene rezultate o ukupnoj aktivnosti cMDH u serumu, te o kinetičkom ponašanju istog enzima, mogli bismo reći da detekcija izoenzima cMDH sa smanjenim afinitetom prema supstratu može korisno poslužiti u dijagnostici, odnosno bolje reći u utvrđivanju biokemijske karte pojedinih tipova hemoblastoza. Hemoblastoses are a group of diseases originating from malignant growth of hematopoetic system cells. The affected organism is subject to multiple metabolic changes: high glycogenolysis, glycolysis, lactate turnover and gluconeogenesis from proteins. Such metabolic changes affect the activity of certain enzymes associated with these metabolic courses. Therefore, biochemical and histochemical techniques of enzyme activity measurement may be used for the determination of malignancy. In addition to the changes of activity, changes of isoenzyme pattern also occur in neoplastic diseases. Precisely, new isoenzymes are generated, typical for fetal tissues that often make a better use of metabolic substrates, resulting in a changed cell genome and dedifferentiation of malignant cells. Sins the citrate cycle interconnects all the above mentioned metabolic courses with the respiratory chain for the purpose of synthesis of energy-rich ATP molecules, the metabolic changes occurring in individuals affected by hemoblastosis are likely to affect both the activity and isoenzyme pattern of cytoplasmatic malat dehydrogenase (cMDH), enzymes of the malate aspartate system for the transport of reduced equivalents from cytoplasm into mitochondria. Considering that the past knowledge of cMDH in the sera of individuals affected by hemoblastoses was rather poor, this paper investigates the activity and kinetic constants of this particular enzyme, in order to establish whether the known gene aberrations and metabolic changes affect the activity and kinetic constants of MDH, i.e. the isoenzyme pattern of this enzyme. This paper investigates the MDH activity in the sera of healthy individuals and those affected by hemoblastosis. It also investigates the kinetic constants, i.e. Michaelis constant (Km) and maximum enzyme speed (Vmax). The investigation included the following types of hemoblastoses: acute lymphoblastic leukaemia (ALL), acute myeloblastic leukaemia (AML), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL) non-Hodgkin's lymphoma (NHL), plasmocytoma (PL) and Hodgkin's disease (MH). For the determination of MDH activity in sera, the reaction of oxaloacetate reduction into malate in the presence of reduced coenzyme 1 (NADH) was used. The NADH oxidation rate was measured spectrophotometrically, and enzyme activity was expressed in ľmol of transformed substrate per minute/L at 250C. Enzyme activity was measured at different substrate concentrations, precisely, 4,9; 3,3; 1,65; 0,83; 0,66; 0,49; 0,33; 0,165; 0,083: 0,066; 0,049 and 0,033 mmol/L. The resulting values were used for the plotting of Michaelis curves and graphs to Lineweaver-Burk and Wilckinson, from which the maximum rates and Michaelis constants were read and calculated. The total MDH activity in the control sera and the diseased individuals' sera was within the normal range. Similarly, no significant difference in the total enzyme activity between the control group and the affected group was observed, except in the case of CLL where a statistically significant increase of the total MDH activity was determined. The investigation of the interdependence of MDH activity and the substrate concentration ranging from 0,033 to 4,9 mmol/L, determined no substrate-related inhibition, either in the control or in the affected sera, at any of the applied substrate concentrations. Therefore, we may say that only a cytoplasmatic form of MDH was present in all examined serum samples. In the control sera, the Michaelis cMDH activity curve had a regular shape and its subsequent linear plotting to Lineweaver-Burk resulted in a straight line from which Vmax and Km values were read and calculated. The value of Michaelis constant corresponded with the reference Km values for cMDH in the sera of healthy individuals. These results show that, in the control sera, one substrate catalyzing form of cMDH was present oxaloacetate with determined and characteristic substrate affinity. In the sera of individuals affected by NHL, PL, ALL, AML and MH, Michaelis curve of MDH activity differed from that in the control sera. The subsequent Lineweaver-Burk's linearization of Michaelis curve resulted in two straight lines different gradients, from which two different maximum speed values and two different Michaelis constants were calculated. One Km value coincided with that of the control sera, and the other was up to 11 times higher than that of the control sera. Based on these results, we may conclude that two cMDH isoenzymes of different substrate affinity were present in the sera of the affected individuals. One of them was identical to the enzyme present in the sera of healthy individuals while the other, i.e. the new isoenzyme, presented a lower level of oxaloacetate utilisation, i.e. a considerably higher substrate concentrations were required to reach the maximum speed. The appearance of this new enzyme was most probably due to cell differentiation in hemoblastoses, i.e. reactivation of genes that were present during the fettle development period. In the sera of individuals affected by CML, only one form of cMDH was determined whose kinetic constants coincided with those in the control sera. The reason for that was searched in the morphological shapes of myelocytes which in CML show a higher level of differentiation than at acute stages of this disease. In the sera of few individuals affected by CLL, two forms of cMDH were determined, while in the sera of other persons affected by this disease, only one MDH isoenzyme with the same kinetic constants at those determined in the sera of healthy individuals was found. Likewise in CML, the reason for such finding was probably the level of malignant cell differentiation. Summarising all the results of the total cMDH activity in sera and of the kinetic behaviour of the same enzyme, we can conclude that the detection of cMDH isoenzyme with lower substrate affinity may serve as a useful tool in diagnostic or, better to say, in the determination of biochemical chart of individual subtypes of hemoblastoses.