71 results on '"Gehre F"'
Search Results
2. Essential role of choline for pneumococcal virulence in an experimental model of meningitis
- Author
-
Gehre, F., Leib, S. L., Grandgirard, D., Kummer, J., Bühlmann, A., Simon, F., Gäumann, R., Kharat, A. S., Täuber, M. G., and Tomasz, A.
- Published
- 2008
3. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology
- Author
-
Meehan, C., Moris, P., Kohl, T., Pečerska, J., Akter, S., Merker, M., Utpatel, C., Beckert, P., Gehre, F., Lempens, P., Stadler, T., Kaswa, M., Kühnert, D., Niemann, S., de Jong, and C., B.
- Abstract
BackgroundTracking recent transmission is a vital part of controlling widespread pathogens such as Mycobacterium tuberculosis. Multiple methods with specific performance characteristics exist for detecting recent transmission chains, usually by clustering strains based on genotype similarities. With such a large variety of methods available, informed selection of an appropriate approach for determining transmissions within a given setting/time period is difficult.
- Published
- 2018
4. Evolution of virulent genotypes and an emerging threat of multidrug resistant tuberculosis in Bamako, Mali
- Author
-
Senghore, M., primary, Diarra, B., additional, Gehre, F., additional, Otu, J., additional, Worwui, A., additional, Muhammad, A.K., additional, Sanogo, M., additional, Baya, B., additional, Orsega, S., additional, Doumbia, S., additional, Diallo, S., additional, de Jong, B.C., additional, Pallen, M.J., additional, and Antonio, M., additional
- Published
- 2018
- Full Text
- View/download PDF
5. Abstracts of the Eighth EDCTP Forum, 6-9 November 2016.
- Author
-
Makanga, M, Beattie, P, Breugelmans, G, Nyirenda, T, Bockarie, M, Tanner, M, Volmink, J, Hankins, C, Walzl, G, Chegou, N, Malherbe, S, Hatherill, M, Scriba, TJ, Zak, DE, Barry, CE, Kaufmann, SHE, Noor, A, Strub-Wourgaft, N, Phillips, P, Munguambe, K, Ravinetto, R, Tinto, H, Diro, E, Mahendrahata, Y, Okebe, J, Rijal, S, Garcia, C, Sundar, S, Ndayisaba, G, Sopheak, T, Ngoduc, T, Van Loen, H, Jacobs, J, D'Alessandro, U, Boelaert, M, Buvé, A, Kamalo, P, Manda-Taylor, L, Rennie, S, Mokgatla, B, Bahati, Ijsselmuiden, C, Afolabi, M, Mcgrath, N, Kampmann, B, Imoukhuede, E, Alexander, N, Larson, H, Chandramohan, D, Bojang, K, Kasaro, MP, Muluka, B, Kaunda, K, Morse, J, Westfall, A, Kapata, N, Kruuner, A, Henostroza, G, Reid, S, Alabi, A, Foguim, F, Sankarganesh, J, Bruske, E, Mfoumbi, A, Mevyann, C, Adegnika, A, Lell, B, Kranzer, K, Kremsner, P, Grobusch, M, Sabiiti, W, Ntinginya, N, Kuchaka, D, Azam, K, Kampira, E, Mtafya, B, Bowness, R, Bhatt, N, Davies, G, Kibiki, G, Gillespie, S, Lejon, V, Ilboudo, H, Mumba, D, Camara, M, Kaba, D, Lumbala, C, Fèvre, E, Jamonneau, V, Bucheton, B, Büscher, P, Chisenga, C, Sinkala, E, Chilengi, R, Chitundu, H, Zyambo, Z, Wandeler, G, Vinikoor, M, Emilie, D, Camara, O, Mathurin, K, Guiguigbaza-Kossigan, D, Philippe, B, Regassa, F, Hassane, S, Bienvenu, SM, Fabrice, C, Ouédraogo, E, Kouakou, L, Owusu, M, Mensah, E, Enimil, A, Mutocheluh, M, Ndongo, FA, Tejiokem, MC, Texier, G, Penda, C, Ndiang, S, Ndongo, J-A, Guemkam, G, Sofeu, CL, Afumbom, K, Faye, A, Msellati, P, Warszawski, J, Vos, A, Devillé, W, Barth, R, Klipstein-Grobusch, K, Tempelman, H, Venter, F, Coutinho, R, Grobbee, D, Ssemwanga, D, Lyagoba, F, Magambo, B, Kapaata, A, Kirangwa, J, Nannyonjo, M, Nassolo, F, Nsubuga, R, Yebra, G, Brown, A, Kaleebu, P, Nylén, H, Habtewold, A, Makonnen, E, Yimer, G, Burhenne, J, Diczfalusy, U, Aklillu, E, Steele, D, Walker, R, Simuyandi, M, Beres, L, Bosomprah, S, Ansumana, R, Taitt, C, Lamin, JM, Jacobsen, KH, Mulvaney, SP, Leski, T, Bangura, U, Stenger, D, De Vries, S, Zinsou, FJ, Honkpehedji, J, Dejon, JC, Loembe, MM, Bache, B, Pakker, N, Van Leeuwen, R, Hounkpatin, AB, Yazdanbakhsh, M, Bethony, J, Hotez, P, Diemert, D, Bache, BE, Fernandes, JF, Obiang, RM, Kabwende, AL, Grobusch, MP, Krishna, S, Kremsner, PG, Todagbe, AS, Nambozi, M, Kabuya, J-B, Hachizovu, S, Mwakazanga, D, Kasongo, W, Buyze, J, Mulenga, M, Geertruyden, J-P, Gitaka, J, Chan, C, Kongere, J, Kagaya, W, Kaneko, A, Kabore, N, Barry, N, Kabre, Z, Werme, K, Fofana, A, Compaore, D, Nikiema, F, Some, F, Djimde, A, Zongo, I, Ouedraogo, B, Kone, A, Sagara, I, Björkman, A, Gil, JP, Nchinda, G, Bopda, A, Nji, N, Ambada, G, Ngu, L, Tchadji, J, Sake, C, Magagoum, S, Njambe, GD, Lisom, A, Park, CG, Tait, D, Sibusiso, H, Manda, O, Croucher, K, Van Der Westhuizen, A, Mshanga, I, Levin, J, Nanvubya, A, Kibengo, F, Jaoko, W, Pala, P, Perreau, M, Namuniina, A, Kitandwe, P, Tapia, G, Serwanga, J, Yates, N, Fast, P, Mayer, B, Montefiori, D, Tomaras, G, Robb, M, Lee, C, Wagner, R, Sanders, E, Kilembe, W, Kiwanuka, N, Gilmour, J, Kuipers, H, Vooij, D, Chinyenze, K, Priddy, F, Ding, S, Hanke, T, Pantaleo, G, Ngasala, B, Jovel, I, Malmberg, M, Mmbando, B, Premji, Z, Mårtensson, A, Mwaiswelo, R, Agbor, L, Apinjoh, T, Mwanza, S, Chileshe, J, Joshi, S, Malunga, P, Manyando, C, Laufer, M, Dara, A, Niangaly, A, Sinha, I, Brodin, D, Fofana, B, Dama, S, Dembele, D, Sidibe, B, Diallo, N, Thera, M, Wright, K, Gil, J, Doumbo, O, Baraka, V, Nabasumba, C, Francis, F, Lutumba, P, Mavoko, H, Alifrangis, M, Van Geertruyden, J-P, Sissoko, S, Sangaré, C, Toure, S, Sanogo, K, Diakite, H, Doumbia, D, Haidara, K, Julé, A, Ashurst, H, Merson, L, Olliaro, P, Marsh, V, Lang, T, Guérin, P, Awuondo, K, Njenga, D, Nyakarungu, E, Titus, P, Sutamihardja, A, Lowe, B, Ogutu, B, Billingsley, P, Soulama, I, Kaboré, M, Coulibaly, A, Ouattara, M, Sanon, S, Diarra, A, Bougouma, E, Ouedraogo, A, Sombie, B, Kargougou, D, Ouattara, D, Issa, N, Tiono, A, Sirima, S, Chaponda, M, Dabira, E, Dao, F, Dara, N, Coulibaly, M, Tolo, A, Maiga, H, Ouologuem, N, Niangaly, H, Botchway, F, Wilson, N, Dickinson-Copeland, CM, Adjei, AA, Wilson, M, Stiles, JK, Hamid, MA, Awad-Elgeid, M, Nasr, A, Netongo, P, Kamdem, S, Velavan, T, Lasry, E, Diarra, M, Bamadio, A, Traore, A, Coumare, S, Soma, B, Dicko, Y, Sangare, B, Tembely, A, Traore, D, Haidara, A, Dicko, A, Diawara, E, Beavogui, A, Camara, D, Sylla, M, Yattara, M, Sow, A, Camara, GC, Diallo, S, Mombo-Ngoma, G, Remppis, J, Sievers, M, Manego, RZ, Endamne, L, Hutchinson, D, Held, J, Supan, C, Salazar, CLO, Bonkian, LN, Nahum, A, Sié, A, Abdulla, S, Cantalloube, C, Djeriou, E, Bouyou-Akotet, M, Mordmüller, B, Siribie, M, Sirima, SB, San Maurice Ouattara, Coulibaly, S, Kabore, JM, Amidou, D, Tekete, M, Traore, O, Haefeli, W, Borrmann, S, Kaboré, N, Kabré, Z, Nikèma, F, Compaoré, D, Somé, F, Djimdé, A, Ouédraogo, J, Chalwe, V, Miller, J, Diakité, H, Greco, B, Spangenberg, T, Kourany-Lefoll, E, Oeuvray, C, Mulry, J, Tyagarajan, K, Magsaam, B, Barnes, K, Hodel, EM, Humphreys, G, Pace, C, Banda, CG, Denti, P, Allen, E, Lalloo, D, Mwapasa, V, Terlouw, A, Mwesigwa, J, Achan, J, Jawara, M, Ditanna, G, Worwui, A, Affara, M, Koukouikila-Koussounda, F, Kombo, M, Vouvoungui, C, Ntoumi, F, Etoka-Beka, MK, Deibert, J, Poulain, P, Kobawila, S, Gueye, NG, Seda, B, Kwambai, T, Jangu, P, Samuels, A, Kuile, FT, Kariuki, S, Barry, A, Bousema, T, Okech, B, Egwang, T, Corran, P, Riley, E, Ezennia, I, Ekwunife, O, Muleba, M, Stevenson, J, Mbata, K, Coetzee, M, Norris, D, Moneke-Anyanwoke, N, Momodou, J, Clarke, E, Scott, S, Tijani, A, Djimde, M, Vaillant, M, Samouda, H, Mensah, V, Roetynck, S, Kanteh, E, Bowyer, G, Ndaw, A, Oko, F, Bliss, C, Jagne, YJ, Cortese, R, Nicosia, A, Roberts, R, D'Alessio, F, Leroy, O, Faye, B, Cisse, B, Gerry, S, Viebig, N, Lawrie, A, Ewer, K, Hill, A, Nebie, I, Tiono, AB, Sanou, G, Konate, AT, Yaro, BJ, Sodiomon, S, Honkpehedji, Y, Agobe, JCD, Zinsou, F, Mengue, J, Richie, T, Hoffman, S, Nouatin, O, Ngoa, UA, Edoa, JR, Homoet, A, Engelhon, JE, Massinga-Louembe, M, Esen, M, Theisen, M, Sim, KL, Luty, AJ, Moutairou, K, Dinko, B, King, E, Targett, G, Sutherland, C, Likhovole, C, Ouma, C, Vulule, J, Musau, S, Khayumbi, J, Okumu, A, Murithi, W, Otu, J, Gehre, F, Zingue, D, Kudzawu, S, Forson, A, Mane, M, Rabna, P, Diarra, B, Kayede, S, Adebiyi, E, Kehinde, A, Onyejepu, N, Onubogu, C, Idigbe, E, Ba, A, Diallo, A, Mboup, S, Disse, K, Kadanga, G, Dagnra, Y, Baldeh, I, Corrah, T, De Jong, B, Antonio, M, Musanabaganwa, C, Musabyimana, JP, Karita, E, Diop, B, Nambajimana, A, Dushimiyimana, V, Karame, P, Russell, J, Ndoli, J, Hategekimana, T, Sendegeya, A, Condo, J, Binagwaho, A, Okonko, I, Okerentugba, P, Opaleye, O, Awujo, E, Frank-Peterside, N, Moyo, S, Kotokwe, K, Mohammed, T, Boleo, C, Mupfumi, L, Chishala, S, Gaseitsiwe, S, Tsalaile, L, Bussmann, H, Makhema, J, Baum, M, Marlink, R, Engelbretch, S, Essex, M, Novitsky, V, Saka, E, Kalipalire, Z, Bhairavabhotla, R, Midiani, D, Sherman, J, Mgode, G, Cox, C, Bwana, D, Mtui, L, Magesa, D, Kahwa, A, Mfinanga, G, Mulder, C, Borain, N, Petersen, L, Du Plessis, J, Theron, G, Holm-Hansen, C, Tekwu, EM, Sidze, LK, Assam, JPA, Eyangoh, S, Niemann, S, Beng, VP, Frank, M, Atiadeve, S, Hilmann, D, Awoniyi, D, Baumann, R, Kriel, B, Jacobs, R, Kidd, M, Loxton, A, Kaempfer, S, Singh, M, Mwanza, W, Milimo, D, Moyo, M, Kasese, N, Cheeba-Lengwe, M, Munkondya, S, Ayles, H, De Haas, P, Muyoyeta, M, Namuganga, AR, Kizza, HM, Mendy, A, Tientcheu, L, Ayorinde, A, Coker, E, Egere, U, Coussens, A, Naude, C, Chaplin, G, Noursadeghi, M, Martineau, A, Jablonski, N, Wilkinson, R, Ouedraogo, HG, Matteelli, A, Regazzi, M, Tarnagda, G, Villani, P, Sulis, G, Diagbouga, S, Roggi, A, Giorgetti, F, Kouanda, S, Bidias, A, Ndjonka, D, Olemba, C, Souleymanou, A, Mukonzo, J, Kuteesa, R, Ogwal-Okeng, J, Gustafsson, LL, Owen, J, Bassi, P, Gashau, W, Olaf, K, Dodoo, A, Okonkwo, P, Kanki, P, Maruapula, D, Seraise, B, Einkauf, K, Reilly, A, Rowley, C, Musonda, R, Framhein, A, Mpagama, S, Semvua, H, Maboko, L, Hoelscher, M, Heinrich, N, Mulenga, L, Kaayunga, C, Davies, M-A, Egger, M, Musukuma, K, Dambe, R, Usadi, B, Ngari, M, Thitiri, J, Mwalekwa, L, Fegan, G, Berkley, J, Nsagha, D, Munamunungu, V, Bolton, C, Siyunda, A, Shilimi, J, Bucciardini, R, Fragola, V, Abegaz, T, Lucattini, S, Halifom, A, Tadesse, E, Berhe, M, Pugliese, K, De Castro, P, Terlizzi, R, Fucili, L, Di Gregorio, M, Mirra, M, Zegeye, T, Binelli, A, Vella, S, Abraham, L, Godefay, H, Rakotoarivelo, R, Raberahona, M, Randriamampionona, N, Andriamihaja, R, Rasamoelina, T, Cornet, M, De Dieu Randria, MJ, Benet, T, Vanhems, P, Andrianarivelo, MR, Chirwa, U, Michelo, C, Hamoonga, R, Wandiga, S, Oduor, P, Agaya, J, Sharma, A, Cavanaugh, S, Cain, K, Mukisa, J, Mupere, E, Worodria, W, Ngom, JT, Koro, F, Godwe, C, Adande, C, Ateugieu, R, Onana, T, Ngono, A, Kamdem, Y, Ngo-Niobe, S, Etoa, F-X, Kanengoni, M, Ruzario, S, Ndebele, P, Shana, M, Tarumbiswa, F, Musesengwa, R, Gutsire, R, Fisher, K, Thyagarajan, B, Akanbi, O, Binuyo, M, Ssengooba, W, Respeito, D, Mambuque, E, Blanco, S, Mandomando, I, Cobelens, F, Garcia-Basteiro, A, Tamene, A, Topp, S, Mwamba, C, Padian, N, Sikazwe, I, Geng, E, Holmes, C, Sikombe, K, Hantuba, Czaicki, N, Simbeza, S, Somwe, P, Umulisa, M, Ilo, J, Kestelyn, E, Uwineza, M, Agaba, S, Delvaux, T, Wijgert, J, Gethi, D, Odeny, L, Tamandjou, C, Kaindjee-Tjituka, F, Brandt, L, Cotton, M, Nel, E, Preiser, W, Andersson, M, Adepoju, A, Magana, M, Etsetowaghan, A, Chilikwazi, M, Sutcliffe, C, Thuma, P, Sinywimaanzi, K, Matakala, H, Munachoonga, P, Moss, W, Masenza, IS, Geisenberger, O, Agrea, P, Rwegoshora, F, Mahiga, H, Olomi, W, Kroidl, A, Kayode, G, Amoakoh-Coleman, M, Ansah, E, Uthman, O, Fokam, J, Santoro, M-M, Musolo, C, Chimbiri, I, Chikwenga, G, Deula, R, Massari, R, Lungu, A, Perno, C-F, Ndzengue, G, Loveline, N, Lissom, A, Flaurent, T, Sosso, S, Essomba, C, Kpeli, G, Otchere, I, Lamelas, A, Buultjens, A, Bulach, D, Baines, S, Seemann, T, Giulieri, S, Nakobu, Z, Aboagye, S, Owusu-Mireku, E, Danso, E, Hauser, J, Hinic, V, Pluschke, G, Stinear, T, Yeboah-Manu, D, Elshayeb, A, Siddig, ME, Ahmed, AA, Hussien, AE, Kabwe, M, Tembo, J, Chilukutu, L, Chilufya, M, Ngulube, F, Lukwesa, C, Enne, V, Wexner, H, Mwananyanda, L, Hamer, D, Sinyangwe, S, Ahmed, Y, Klein, N, Maeurer, M, Zumla, A, Bates, M, Beyala, L, Etienne, G, Anthony, N, Benjamin, A, Ateudjieu, J, Chibwe, B, Ojok, D, Tarr, CA, Perez, GM, Omeonga, S, Kibungu, F, Meyer, A, Lansana, P, Mayor, A, Onyango, P, Van Loggerenberg, F, Furtado, T, Boggs, L, Segrt, A, Dochez, C, Burnett, R, Mphahlele, MJ, Miiro, G, Mbidde, E, Peshu, N, Kivaya, E, Ngowi, B, Kavishe, R, Maowia, M, Sandstrom, E, Ayuo, E, Mmbaga, B, Leisegang, C, Thorpe, M, Batchilly, E, N'Guessan, J-P, Kanteh, D, Søfteland, S, Sebitloane, M, Vwalika, B, Taylor, M, Galappaththi-Arachchige, H, Holmen, S, Gundersen, SG, Ndhlovu, P, Kjetland, EF, Kombe, F, Toohey, J, Pienaar, E, Kredo, T, Cham, PM, Abubakar, I, Dondeh, BL, Vischer, N, Pfeiffer, C, Burri, C, Musukwa, K, Zürcher, S, Mwandu, T, Bauer, S, Adriko, M, Mwaura, P, Omolloh, K, Jones, C, Malecela, M, Hamidu, BA, Jenner, TE, Asiedu, LJ, Osei-Atweneboana, M, Afeke, I, Addo, P, Newman, M, Durnez, L, Eddyani, M, Ammisah, N, Abas, M, Quartey, M, Ablordey, A, Akinwale, O, Adeneye, A, Ezeugwu, S, Olukosi, Y, Adewale, B, Sulyman, M, Mafe, M, Okwuzu, J, Gyang, P, Nwafor, T, Henry, U, Musa, B, Ujah, I, Agobé, JCD, Grau-Pujol, B, Sacoor, C, Nhabomba, A, Casellas, A, Quintó, L, Subirà, C, Giné, R, Valentín, A, Muñoz, J, Nikiema, M, Ky-Ba, A, Comapore, KAM, Sangare, L, Oluremi, A, Michel, M, Camara, Y, Sanneh, B, Cuamba, I, Gutiérrez, J, Lázaro, C, Mejia, R, Adedeji, A, Folorunsho, S, Demehin, P, Akinsanya, B, Cowley, G, Da Silva, ET, Nabicassa, M, De Barros, PDP, Blif, MM, Bailey, R, Last, A, Mahendradhata, Y, Gotuzzo, E, De Nys, K, Casteels, M, Nona, SK, Lumeka, K, Todagbe, A, Djima, MM, Ukpong, M, Sagay, A, Khamofu, H, Torpey, K, Afiadigwe, E, Anenih, J, Ezechi, O, Nweneka, C, Idoko, J, Muhumuza, S, Katahoire, A, Nuwaha, F, Olsen, A, Okeyo, S, Omollo, R, Kimutai, R, Ochieng, M, Egondi, T, Moonga, C, Chileshe, C, Magwende, G, Anumudu, C, Onile, O, Oladele, V, Adebayo, A, Awobode, H, Oyeyemi, O, Odaibo, A, Kabuye, E, Lutalo, T, Njua-Yafi, C, Nkuo-Akenji, T, Anchang-Kimbi, J, Mugri, R, Chi, H, Tata, R, Njumkeng, C, Dodoo, D, Achidi, E, Fernandes, J, Bache, EB, Matakala, K, Searle, K, Greenman, M, Rainwater-Lovett, K, Makanga, M, Beattie, P, Breugelmans, G, Nyirenda, T, Bockarie, M, Tanner, M, Volmink, J, Hankins, C, Walzl, G, Chegou, N, Malherbe, S, Hatherill, M, Scriba, TJ, Zak, DE, Barry, CE, Kaufmann, SHE, Noor, A, Strub-Wourgaft, N, Phillips, P, Munguambe, K, Ravinetto, R, Tinto, H, Diro, E, Mahendrahata, Y, Okebe, J, Rijal, S, Garcia, C, Sundar, S, Ndayisaba, G, Sopheak, T, Ngoduc, T, Van Loen, H, Jacobs, J, D'Alessandro, U, Boelaert, M, Buvé, A, Kamalo, P, Manda-Taylor, L, Rennie, S, Mokgatla, B, Bahati, Ijsselmuiden, C, Afolabi, M, Mcgrath, N, Kampmann, B, Imoukhuede, E, Alexander, N, Larson, H, Chandramohan, D, Bojang, K, Kasaro, MP, Muluka, B, Kaunda, K, Morse, J, Westfall, A, Kapata, N, Kruuner, A, Henostroza, G, Reid, S, Alabi, A, Foguim, F, Sankarganesh, J, Bruske, E, Mfoumbi, A, Mevyann, C, Adegnika, A, Lell, B, Kranzer, K, Kremsner, P, Grobusch, M, Sabiiti, W, Ntinginya, N, Kuchaka, D, Azam, K, Kampira, E, Mtafya, B, Bowness, R, Bhatt, N, Davies, G, Kibiki, G, Gillespie, S, Lejon, V, Ilboudo, H, Mumba, D, Camara, M, Kaba, D, Lumbala, C, Fèvre, E, Jamonneau, V, Bucheton, B, Büscher, P, Chisenga, C, Sinkala, E, Chilengi, R, Chitundu, H, Zyambo, Z, Wandeler, G, Vinikoor, M, Emilie, D, Camara, O, Mathurin, K, Guiguigbaza-Kossigan, D, Philippe, B, Regassa, F, Hassane, S, Bienvenu, SM, Fabrice, C, Ouédraogo, E, Kouakou, L, Owusu, M, Mensah, E, Enimil, A, Mutocheluh, M, Ndongo, FA, Tejiokem, MC, Texier, G, Penda, C, Ndiang, S, Ndongo, J-A, Guemkam, G, Sofeu, CL, Afumbom, K, Faye, A, Msellati, P, Warszawski, J, Vos, A, Devillé, W, Barth, R, Klipstein-Grobusch, K, Tempelman, H, Venter, F, Coutinho, R, Grobbee, D, Ssemwanga, D, Lyagoba, F, Magambo, B, Kapaata, A, Kirangwa, J, Nannyonjo, M, Nassolo, F, Nsubuga, R, Yebra, G, Brown, A, Kaleebu, P, Nylén, H, Habtewold, A, Makonnen, E, Yimer, G, Burhenne, J, Diczfalusy, U, Aklillu, E, Steele, D, Walker, R, Simuyandi, M, Beres, L, Bosomprah, S, Ansumana, R, Taitt, C, Lamin, JM, Jacobsen, KH, Mulvaney, SP, Leski, T, Bangura, U, Stenger, D, De Vries, S, Zinsou, FJ, Honkpehedji, J, Dejon, JC, Loembe, MM, Bache, B, Pakker, N, Van Leeuwen, R, Hounkpatin, AB, Yazdanbakhsh, M, Bethony, J, Hotez, P, Diemert, D, Bache, BE, Fernandes, JF, Obiang, RM, Kabwende, AL, Grobusch, MP, Krishna, S, Kremsner, PG, Todagbe, AS, Nambozi, M, Kabuya, J-B, Hachizovu, S, Mwakazanga, D, Kasongo, W, Buyze, J, Mulenga, M, Geertruyden, J-P, Gitaka, J, Chan, C, Kongere, J, Kagaya, W, Kaneko, A, Kabore, N, Barry, N, Kabre, Z, Werme, K, Fofana, A, Compaore, D, Nikiema, F, Some, F, Djimde, A, Zongo, I, Ouedraogo, B, Kone, A, Sagara, I, Björkman, A, Gil, JP, Nchinda, G, Bopda, A, Nji, N, Ambada, G, Ngu, L, Tchadji, J, Sake, C, Magagoum, S, Njambe, GD, Lisom, A, Park, CG, Tait, D, Sibusiso, H, Manda, O, Croucher, K, Van Der Westhuizen, A, Mshanga, I, Levin, J, Nanvubya, A, Kibengo, F, Jaoko, W, Pala, P, Perreau, M, Namuniina, A, Kitandwe, P, Tapia, G, Serwanga, J, Yates, N, Fast, P, Mayer, B, Montefiori, D, Tomaras, G, Robb, M, Lee, C, Wagner, R, Sanders, E, Kilembe, W, Kiwanuka, N, Gilmour, J, Kuipers, H, Vooij, D, Chinyenze, K, Priddy, F, Ding, S, Hanke, T, Pantaleo, G, Ngasala, B, Jovel, I, Malmberg, M, Mmbando, B, Premji, Z, Mårtensson, A, Mwaiswelo, R, Agbor, L, Apinjoh, T, Mwanza, S, Chileshe, J, Joshi, S, Malunga, P, Manyando, C, Laufer, M, Dara, A, Niangaly, A, Sinha, I, Brodin, D, Fofana, B, Dama, S, Dembele, D, Sidibe, B, Diallo, N, Thera, M, Wright, K, Gil, J, Doumbo, O, Baraka, V, Nabasumba, C, Francis, F, Lutumba, P, Mavoko, H, Alifrangis, M, Van Geertruyden, J-P, Sissoko, S, Sangaré, C, Toure, S, Sanogo, K, Diakite, H, Doumbia, D, Haidara, K, Julé, A, Ashurst, H, Merson, L, Olliaro, P, Marsh, V, Lang, T, Guérin, P, Awuondo, K, Njenga, D, Nyakarungu, E, Titus, P, Sutamihardja, A, Lowe, B, Ogutu, B, Billingsley, P, Soulama, I, Kaboré, M, Coulibaly, A, Ouattara, M, Sanon, S, Diarra, A, Bougouma, E, Ouedraogo, A, Sombie, B, Kargougou, D, Ouattara, D, Issa, N, Tiono, A, Sirima, S, Chaponda, M, Dabira, E, Dao, F, Dara, N, Coulibaly, M, Tolo, A, Maiga, H, Ouologuem, N, Niangaly, H, Botchway, F, Wilson, N, Dickinson-Copeland, CM, Adjei, AA, Wilson, M, Stiles, JK, Hamid, MA, Awad-Elgeid, M, Nasr, A, Netongo, P, Kamdem, S, Velavan, T, Lasry, E, Diarra, M, Bamadio, A, Traore, A, Coumare, S, Soma, B, Dicko, Y, Sangare, B, Tembely, A, Traore, D, Haidara, A, Dicko, A, Diawara, E, Beavogui, A, Camara, D, Sylla, M, Yattara, M, Sow, A, Camara, GC, Diallo, S, Mombo-Ngoma, G, Remppis, J, Sievers, M, Manego, RZ, Endamne, L, Hutchinson, D, Held, J, Supan, C, Salazar, CLO, Bonkian, LN, Nahum, A, Sié, A, Abdulla, S, Cantalloube, C, Djeriou, E, Bouyou-Akotet, M, Mordmüller, B, Siribie, M, Sirima, SB, San Maurice Ouattara, Coulibaly, S, Kabore, JM, Amidou, D, Tekete, M, Traore, O, Haefeli, W, Borrmann, S, Kaboré, N, Kabré, Z, Nikèma, F, Compaoré, D, Somé, F, Djimdé, A, Ouédraogo, J, Chalwe, V, Miller, J, Diakité, H, Greco, B, Spangenberg, T, Kourany-Lefoll, E, Oeuvray, C, Mulry, J, Tyagarajan, K, Magsaam, B, Barnes, K, Hodel, EM, Humphreys, G, Pace, C, Banda, CG, Denti, P, Allen, E, Lalloo, D, Mwapasa, V, Terlouw, A, Mwesigwa, J, Achan, J, Jawara, M, Ditanna, G, Worwui, A, Affara, M, Koukouikila-Koussounda, F, Kombo, M, Vouvoungui, C, Ntoumi, F, Etoka-Beka, MK, Deibert, J, Poulain, P, Kobawila, S, Gueye, NG, Seda, B, Kwambai, T, Jangu, P, Samuels, A, Kuile, FT, Kariuki, S, Barry, A, Bousema, T, Okech, B, Egwang, T, Corran, P, Riley, E, Ezennia, I, Ekwunife, O, Muleba, M, Stevenson, J, Mbata, K, Coetzee, M, Norris, D, Moneke-Anyanwoke, N, Momodou, J, Clarke, E, Scott, S, Tijani, A, Djimde, M, Vaillant, M, Samouda, H, Mensah, V, Roetynck, S, Kanteh, E, Bowyer, G, Ndaw, A, Oko, F, Bliss, C, Jagne, YJ, Cortese, R, Nicosia, A, Roberts, R, D'Alessio, F, Leroy, O, Faye, B, Cisse, B, Gerry, S, Viebig, N, Lawrie, A, Ewer, K, Hill, A, Nebie, I, Tiono, AB, Sanou, G, Konate, AT, Yaro, BJ, Sodiomon, S, Honkpehedji, Y, Agobe, JCD, Zinsou, F, Mengue, J, Richie, T, Hoffman, S, Nouatin, O, Ngoa, UA, Edoa, JR, Homoet, A, Engelhon, JE, Massinga-Louembe, M, Esen, M, Theisen, M, Sim, KL, Luty, AJ, Moutairou, K, Dinko, B, King, E, Targett, G, Sutherland, C, Likhovole, C, Ouma, C, Vulule, J, Musau, S, Khayumbi, J, Okumu, A, Murithi, W, Otu, J, Gehre, F, Zingue, D, Kudzawu, S, Forson, A, Mane, M, Rabna, P, Diarra, B, Kayede, S, Adebiyi, E, Kehinde, A, Onyejepu, N, Onubogu, C, Idigbe, E, Ba, A, Diallo, A, Mboup, S, Disse, K, Kadanga, G, Dagnra, Y, Baldeh, I, Corrah, T, De Jong, B, Antonio, M, Musanabaganwa, C, Musabyimana, JP, Karita, E, Diop, B, Nambajimana, A, Dushimiyimana, V, Karame, P, Russell, J, Ndoli, J, Hategekimana, T, Sendegeya, A, Condo, J, Binagwaho, A, Okonko, I, Okerentugba, P, Opaleye, O, Awujo, E, Frank-Peterside, N, Moyo, S, Kotokwe, K, Mohammed, T, Boleo, C, Mupfumi, L, Chishala, S, Gaseitsiwe, S, Tsalaile, L, Bussmann, H, Makhema, J, Baum, M, Marlink, R, Engelbretch, S, Essex, M, Novitsky, V, Saka, E, Kalipalire, Z, Bhairavabhotla, R, Midiani, D, Sherman, J, Mgode, G, Cox, C, Bwana, D, Mtui, L, Magesa, D, Kahwa, A, Mfinanga, G, Mulder, C, Borain, N, Petersen, L, Du Plessis, J, Theron, G, Holm-Hansen, C, Tekwu, EM, Sidze, LK, Assam, JPA, Eyangoh, S, Niemann, S, Beng, VP, Frank, M, Atiadeve, S, Hilmann, D, Awoniyi, D, Baumann, R, Kriel, B, Jacobs, R, Kidd, M, Loxton, A, Kaempfer, S, Singh, M, Mwanza, W, Milimo, D, Moyo, M, Kasese, N, Cheeba-Lengwe, M, Munkondya, S, Ayles, H, De Haas, P, Muyoyeta, M, Namuganga, AR, Kizza, HM, Mendy, A, Tientcheu, L, Ayorinde, A, Coker, E, Egere, U, Coussens, A, Naude, C, Chaplin, G, Noursadeghi, M, Martineau, A, Jablonski, N, Wilkinson, R, Ouedraogo, HG, Matteelli, A, Regazzi, M, Tarnagda, G, Villani, P, Sulis, G, Diagbouga, S, Roggi, A, Giorgetti, F, Kouanda, S, Bidias, A, Ndjonka, D, Olemba, C, Souleymanou, A, Mukonzo, J, Kuteesa, R, Ogwal-Okeng, J, Gustafsson, LL, Owen, J, Bassi, P, Gashau, W, Olaf, K, Dodoo, A, Okonkwo, P, Kanki, P, Maruapula, D, Seraise, B, Einkauf, K, Reilly, A, Rowley, C, Musonda, R, Framhein, A, Mpagama, S, Semvua, H, Maboko, L, Hoelscher, M, Heinrich, N, Mulenga, L, Kaayunga, C, Davies, M-A, Egger, M, Musukuma, K, Dambe, R, Usadi, B, Ngari, M, Thitiri, J, Mwalekwa, L, Fegan, G, Berkley, J, Nsagha, D, Munamunungu, V, Bolton, C, Siyunda, A, Shilimi, J, Bucciardini, R, Fragola, V, Abegaz, T, Lucattini, S, Halifom, A, Tadesse, E, Berhe, M, Pugliese, K, De Castro, P, Terlizzi, R, Fucili, L, Di Gregorio, M, Mirra, M, Zegeye, T, Binelli, A, Vella, S, Abraham, L, Godefay, H, Rakotoarivelo, R, Raberahona, M, Randriamampionona, N, Andriamihaja, R, Rasamoelina, T, Cornet, M, De Dieu Randria, MJ, Benet, T, Vanhems, P, Andrianarivelo, MR, Chirwa, U, Michelo, C, Hamoonga, R, Wandiga, S, Oduor, P, Agaya, J, Sharma, A, Cavanaugh, S, Cain, K, Mukisa, J, Mupere, E, Worodria, W, Ngom, JT, Koro, F, Godwe, C, Adande, C, Ateugieu, R, Onana, T, Ngono, A, Kamdem, Y, Ngo-Niobe, S, Etoa, F-X, Kanengoni, M, Ruzario, S, Ndebele, P, Shana, M, Tarumbiswa, F, Musesengwa, R, Gutsire, R, Fisher, K, Thyagarajan, B, Akanbi, O, Binuyo, M, Ssengooba, W, Respeito, D, Mambuque, E, Blanco, S, Mandomando, I, Cobelens, F, Garcia-Basteiro, A, Tamene, A, Topp, S, Mwamba, C, Padian, N, Sikazwe, I, Geng, E, Holmes, C, Sikombe, K, Hantuba, Czaicki, N, Simbeza, S, Somwe, P, Umulisa, M, Ilo, J, Kestelyn, E, Uwineza, M, Agaba, S, Delvaux, T, Wijgert, J, Gethi, D, Odeny, L, Tamandjou, C, Kaindjee-Tjituka, F, Brandt, L, Cotton, M, Nel, E, Preiser, W, Andersson, M, Adepoju, A, Magana, M, Etsetowaghan, A, Chilikwazi, M, Sutcliffe, C, Thuma, P, Sinywimaanzi, K, Matakala, H, Munachoonga, P, Moss, W, Masenza, IS, Geisenberger, O, Agrea, P, Rwegoshora, F, Mahiga, H, Olomi, W, Kroidl, A, Kayode, G, Amoakoh-Coleman, M, Ansah, E, Uthman, O, Fokam, J, Santoro, M-M, Musolo, C, Chimbiri, I, Chikwenga, G, Deula, R, Massari, R, Lungu, A, Perno, C-F, Ndzengue, G, Loveline, N, Lissom, A, Flaurent, T, Sosso, S, Essomba, C, Kpeli, G, Otchere, I, Lamelas, A, Buultjens, A, Bulach, D, Baines, S, Seemann, T, Giulieri, S, Nakobu, Z, Aboagye, S, Owusu-Mireku, E, Danso, E, Hauser, J, Hinic, V, Pluschke, G, Stinear, T, Yeboah-Manu, D, Elshayeb, A, Siddig, ME, Ahmed, AA, Hussien, AE, Kabwe, M, Tembo, J, Chilukutu, L, Chilufya, M, Ngulube, F, Lukwesa, C, Enne, V, Wexner, H, Mwananyanda, L, Hamer, D, Sinyangwe, S, Ahmed, Y, Klein, N, Maeurer, M, Zumla, A, Bates, M, Beyala, L, Etienne, G, Anthony, N, Benjamin, A, Ateudjieu, J, Chibwe, B, Ojok, D, Tarr, CA, Perez, GM, Omeonga, S, Kibungu, F, Meyer, A, Lansana, P, Mayor, A, Onyango, P, Van Loggerenberg, F, Furtado, T, Boggs, L, Segrt, A, Dochez, C, Burnett, R, Mphahlele, MJ, Miiro, G, Mbidde, E, Peshu, N, Kivaya, E, Ngowi, B, Kavishe, R, Maowia, M, Sandstrom, E, Ayuo, E, Mmbaga, B, Leisegang, C, Thorpe, M, Batchilly, E, N'Guessan, J-P, Kanteh, D, Søfteland, S, Sebitloane, M, Vwalika, B, Taylor, M, Galappaththi-Arachchige, H, Holmen, S, Gundersen, SG, Ndhlovu, P, Kjetland, EF, Kombe, F, Toohey, J, Pienaar, E, Kredo, T, Cham, PM, Abubakar, I, Dondeh, BL, Vischer, N, Pfeiffer, C, Burri, C, Musukwa, K, Zürcher, S, Mwandu, T, Bauer, S, Adriko, M, Mwaura, P, Omolloh, K, Jones, C, Malecela, M, Hamidu, BA, Jenner, TE, Asiedu, LJ, Osei-Atweneboana, M, Afeke, I, Addo, P, Newman, M, Durnez, L, Eddyani, M, Ammisah, N, Abas, M, Quartey, M, Ablordey, A, Akinwale, O, Adeneye, A, Ezeugwu, S, Olukosi, Y, Adewale, B, Sulyman, M, Mafe, M, Okwuzu, J, Gyang, P, Nwafor, T, Henry, U, Musa, B, Ujah, I, Agobé, JCD, Grau-Pujol, B, Sacoor, C, Nhabomba, A, Casellas, A, Quintó, L, Subirà, C, Giné, R, Valentín, A, Muñoz, J, Nikiema, M, Ky-Ba, A, Comapore, KAM, Sangare, L, Oluremi, A, Michel, M, Camara, Y, Sanneh, B, Cuamba, I, Gutiérrez, J, Lázaro, C, Mejia, R, Adedeji, A, Folorunsho, S, Demehin, P, Akinsanya, B, Cowley, G, Da Silva, ET, Nabicassa, M, De Barros, PDP, Blif, MM, Bailey, R, Last, A, Mahendradhata, Y, Gotuzzo, E, De Nys, K, Casteels, M, Nona, SK, Lumeka, K, Todagbe, A, Djima, MM, Ukpong, M, Sagay, A, Khamofu, H, Torpey, K, Afiadigwe, E, Anenih, J, Ezechi, O, Nweneka, C, Idoko, J, Muhumuza, S, Katahoire, A, Nuwaha, F, Olsen, A, Okeyo, S, Omollo, R, Kimutai, R, Ochieng, M, Egondi, T, Moonga, C, Chileshe, C, Magwende, G, Anumudu, C, Onile, O, Oladele, V, Adebayo, A, Awobode, H, Oyeyemi, O, Odaibo, A, Kabuye, E, Lutalo, T, Njua-Yafi, C, Nkuo-Akenji, T, Anchang-Kimbi, J, Mugri, R, Chi, H, Tata, R, Njumkeng, C, Dodoo, D, Achidi, E, Fernandes, J, Bache, EB, Matakala, K, Searle, K, Greenman, M, and Rainwater-Lovett, K
- Published
- 2017
6. Performance comparison of a pair of Lowenstein–Jensen media supplemented with pyruvate or glycerol, and the combination of both supplements in a single Lowenstein–Jensen medium for the growth support of the Mycobacterium Tuberculosis complex
- Author
-
Faburay, Alieu K., primary, Mendy, Francis S., additional, Otu, Jacob K., additional, Faal-Jawara, Tutty Isatou, additional, Gehre, F., additional, and Secka, Ousman, additional
- Published
- 2016
- Full Text
- View/download PDF
7. Tuberculosis drug resistance in Bamako, Mali, from 2006 to 2014
- Author
-
Diarra, B., primary, Goita, D., additional, Tounkara, S., additional, Sanogo, M., additional, Baya, B., additional, Togo, A. C. G., additional, Maiga, M., additional, Sarro, Y. S., additional, Kone, A., additional, Kone, B., additional, M’Baye, O., additional, Coulibaly, N., additional, Kassambara, H., additional, Cisse, A., additional, Belson, M., additional, Polis, M. A., additional, Otu, J., additional, Gehre, F., additional, Antonio, M., additional, Dao, S., additional, Siddiqui, S., additional, Murphy, R. L., additional, de Jong, B. C., additional, and Diallo, S., additional
- Published
- 2016
- Full Text
- View/download PDF
8. Evolution and conservation of microsatellite markers for Leishmania tropica
- Author
-
SCHWENKENBECHER, J, primary, FROHLICH, C, additional, GEHRE, F, additional, SCHNUR, L, additional, and SCHONIAN, G, additional
- Published
- 2004
- Full Text
- View/download PDF
9. The genome of Mycobacterium africanum west African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex
- Author
-
Bentley, S. D., Comas, I., Bryant, J. M., Walker, D., Smith, N. H., Harris, S. R., Thurston, S., Gagneux, S., Wood, J., Antonio, M., Quail, M. A., Gehre, F., Adegbola, R. A., Parkhill, J., and de Jong, B. C.
- Subjects
3. Good health
10. Rapid regional mobile laboratory response and genomic monkeypox virus (MPXV) surveillance in seven East African Community partner states, August 2024: preparedness activities for the ongoing outbreak.
- Author
-
Gehre F, Nzeyimana E, Lagu HI, Achol E, Nguinkal JA, Kezakarayagwa E, Ihorimbere T, Nzoyikorera N, Kabatesi F, Uwineza MN, Roba A, Ndia MN, Kiiru JN, Nykwec GA, Chot Moun IG, Aguer MA, Maror JA, Dumo GW, Losuba M, Deng LL, Omari N, Ochido G, Melo AM, Mtesigwa Mkama PB, Mgimba E, Francis MF, Mapunda LA, Magesa A, Moremi N, Pimundu G, Muyigi T, Nabadda SN, Kabalisa E, Mukagatare I, Mukadi-Bamuleka D, Kamangu EN, May J, and Affara M
- Subjects
- Humans, Africa, Eastern epidemiology, Mobile Health Units, Population Surveillance, Disease Outbreaks prevention & control, Monkeypox virus genetics, Monkeypox virus isolation & purification, Mpox (monkeypox) epidemiology, Mpox (monkeypox) virology
- Abstract
The East African Community (EAC) is experiencing an unprecedented, emerging mpox outbreak since July 2024 in five of eight partner states. We highlight rapid regional response measures, initiated August 2024 coordinated by EAC: field deployment of six mobile laboratories in Burundi, Rwanda, Uganda, Tanzania, Kenya, South Sudan to high-risk areas, donation of one mobile laboratory to Democratic Republic of the Congo and genomic monkeypox virus (MPXV) surveillance support. These interventions aim to limit local mpox spread and support international containment.
- Published
- 2024
- Full Text
- View/download PDF
11. Assessment of the pathogen genomics landscape highlights disparities and challenges for effective AMR Surveillance and outbreak response in the East African community.
- Author
-
Nguinkal JA, Zoclanclounon YAB, Molina A, Roba A, Nyakio NM, Lokamar PN, Nzoyikorera N, Ihorimbere T, Nyandwi J, Aguer MA, Maror JA, Lokore ML, Francis MF, Mapunda LA, Beyanga M, Muyigi T, Pimundu G, Nabadda SN, Kabalisa E, Umuringa JD, Tare IM, Lagu HI, Achol E, May J, Affara M, and Gehre F
- Subjects
- Humans, Africa, Eastern epidemiology, High-Throughput Nucleotide Sequencing, Drug Resistance, Bacterial genetics, Bacteria genetics, Bacteria isolation & purification, Bacteria classification, Genome, Bacterial, East African People, Disease Outbreaks, Genomics
- Abstract
The East African Community (EAC) grapples with many challenges in tackling infectious disease threats and antimicrobial resistance (AMR), underscoring the importance of regional and robust pathogen genomics capacities. However, a significant disparity exists among EAC Partner States in harnessing bacterial pathogen sequencing and data analysis capabilities for effective AMR surveillance and outbreak response. This study assesses the current landscape and challenges associated with pathogen next-generation sequencing (NGS) within EAC, explicitly focusing on World Health Organization (WHO) AMR-priority pathogens. The assessment adopts a comprehensive approach, integrating a questionnaire-based survey amongst National Public Health Laboratories (NPHLs) with an analysis of publicly available metadata on bacterial pathogens isolated in the EAC countries. In addition to the heavy reliance on third-party organizations for bacterial NGS, the findings reveal a significant disparity among EAC member States in leveraging bacterial pathogen sequencing and data analysis. Approximately 97% (n = 4,462) of publicly available high-quality bacterial genome assemblies of samples collected in the EAC were processed and analyzed by external organizations, mainly in Europe and North America. Tanzania led in-country sequencing efforts, followed by Kenya and Uganda. The other EAC countries had no publicly available samples or had all their samples sequenced and analyzed outside the region. Insufficient local NGS sequencing facilities, limited bioinformatics expertise, lack of adequate computing resources, and inadequate data-sharing mechanisms are among the most pressing challenges that hinder the EAC's NPHLs from effectively leveraging pathogen genomics data. These insights emphasized the need to strengthen microbial pathogen sequencing and data analysis capabilities within the EAC to empower these laboratories to conduct pathogen sequencing and data analysis independently. Substantial investments in equipment, technology, and capacity-building initiatives are crucial for supporting regional preparedness against infectious disease outbreaks and mitigating the impact of AMR burden. In addition, collaborative efforts should be developed to narrow the gap, remedy regional imbalances, and harmonize NGS data standards. Supporting regional collaboration, strengthening in-country genomics capabilities, and investing in long-term training programs will ultimately improve pathogen data generation and foster a robust NGS-driven AMR surveillance and outbreak response in the EAC, thereby supporting global health initiatives., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. The use of Kudoh method for culture of Mycobacterium tuberculosis and Mycobacterium africanum in The Gambia.
- Author
-
Jobarteh T, Otu J, Gitteh E, Mendy FS, Faal-Jawara TI, Ofori-Anyinam B, Sarr B, Riley AJ, Ayorinde A, de Jong BC, Kampmann B, Secka O, and Gehre F
- Subjects
- Humans, Gambia, Sodium Hydroxide, Bacteriological Techniques methods, Sputum microbiology, Culture Media, Mycobacterium tuberculosis, Tuberculosis diagnosis, Tuberculosis microbiology
- Abstract
Background: Mycobacterium tuberculosis culturing remains the gold standard for laboratory diagnosis of tuberculosis. Tuberculosis remains a great public health problem in developing countries like The Gambia, as most of the methods currently used for bacterial isolation are either time-consuming or costly., Objective: To evaluate the Kudoh swab method in a West African setting in Gambia, with a particular focus on the method's performance when culturing Mycobacterium africanum West Africa 2 (MAF2) isolates., Method: 75 sputum samples were collected in the Greater Banjul Area and decontaminated in parallel with both the standard N-acetyl-L-Cysteine-NaOH (NALC-NaOH) and the Kudoh swab method in the TB diagnostics laboratory in the Medical Research Council Unit The Gambia between 30th December 2017 and 25th February 2018. These samples were subsequently cultured on standard Löwenstein-Jensen and Modified Ogawa media respectively and incubated at 37°C for mycobacterial growth. Spoligotyping was done to determine if the decontamination and culture methods compared could equally detect Mycobacterium tuberculosis, Mycobacterium africanum West Africa 1 and Mycobacterium africanum West Africa 2., Result: Among the 50 smear positives, 35 (70%) were culture-positive with Kudoh and 32 (64%) were culture positive with NALC-NaOH, whilst 7(28%) of the 25 smear negative samples were culture positive with both methods (Table 2). There was no significant difference in recovery between both methods (McNemar's test, p-value = 0.7003), suggesting that the overall positivity rate between the two methods is comparable. There were no differences in time-to-positivity or contamination rate between the methods. However, Kudoh yielded positive cultures that were negative on LJ and vice versa. All findings were irrespective of mycobacterial lineages., Conclusion: The Kudoh method has comparable sensitivity to the NALC-NaOH method for detecting Mycobacterium tuberculosis complex isolates. It is easy to perform and could be an add on option for mycobacterial culture in the field in The Gambia, since it requires less biosafety equipment., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Jobarteh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
13. Regional Evaluation of Two SARS-CoV-2 Antigen Rapid Diagnostic Tests in East Africa.
- Author
-
Affara M, Lagu HI, Achol E, Omari N, Ochido G, Kezakarayagwa E, Kabatesi F, Nduwimana C, Nkeshimana A, Duku Samson D, Awin Nykwec G, Daniel Wani Lako J, Lasuba M, Lojok Deng L, Ezekiely Kelly M, Bernard Mtesigwa Mkama P, Magesa A, Said Ali S, Amour Rashid S, Pimundu G, Muyigi T, Ndidde Nabadda S, Rutayisire R, Kabanda A, Kabalisa E, May J, Nzeyimana E, Katende M, and Gehre F
- Subjects
- Humans, RNA, Viral genetics, Rapid Diagnostic Tests, Uganda, COVID-19 Testing, SARS-CoV-2 genetics, COVID-19 diagnosis
- Abstract
The clinical performance of two rapid antigen tests for the diagnosis of Severe Acute Respiratory Coronavirus (SARS-CoV-2) were regionally evaluated in East African populations. Swabs were collected from 1,432 individuals from five Partner States of the East African Community (Tanzania, Uganda, Burundi, Rwanda and South Sudan). The two rapid antigen tests (Bionote NowCheck COVID-19 Ag and SD Biosensor STANDARD Q COVID-19 Ag) were evaluated against the detection of SARS-CoV-2 RNA by the Reverse Transcription PCR (RT-PCR) gold standard. Of the concordant results with both RT-PCR and rapid antigen test data (862 for Bionote and 852 for SD Biosensor), overall clinical sensitivity was 60% and 50% for the Bionote NowCheck and the SD Biosensor STANDARD Q, respectively. Stratification by viral load, including samples with RT-PCR cycle thresholds (Ct) of <25, improved sensitivity to 90% for both rapid diagnostic tests (RDTs). Overall specificity was good at 99% for both antigen tests. Taken together, the clinical performance of both Ag-RDTs in real world settings within the East African target population was lower than has been reported elsewhere and below the acceptable levels for sensitivity of >80%, as defined by the WHO. Therefore, the rapid antigen test alone should not be used for diagnosis but could be used as part of an algorithm to identify potentially infectious individuals with high viral load. IMPORTANCE Accurate diagnostic tests are essential to both support the management and containment of outbreaks, as well as inform appropriate patient care. In the case of the SARS-CoV-2 pandemic, antigen Rapid Diagnostic Tests (Ag-RDTs) played a major role in this function, enabling widespread testing by untrained individuals, both at home and within health facilities. In East Africa, a number of SARS-CoV-2 Ag-RDTs are available; however, there remains little information on their true test performance within the region, in the hands of the health workers routinely carrying out SARS-CoV-2 diagnostics. This study contributes test performance data for two commonly used SARS-CoV-2 Ag-RDTs in East Africa, which will help inform the use of these RDTs within the region., Competing Interests: The authors declare no conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
14. Molecular Characterization and Phylogenetic Analysis of Dengue Fever Viruses in Three Outbreaks in Tanzania Between 2017 and 2019.
- Author
-
Kelly ME, Msafiri F, Affara M, Gehre F, Moremi N, Mghamba J, Misinzo G, Thye T, Gatei W, Whistler T, Joachim A, Lema N, and Santiago GA
- Subjects
- Male, Humans, Young Adult, Adult, Female, Phylogeny, Tanzania epidemiology, Disease Outbreaks, Serogroup, Genotype, Dengue epidemiology, Dengue Virus
- Abstract
Background: Dengue is a disease of public health interest, and Tanzania experienced major outbreaks in 2014 and 2019. Here, we report our findings on the molecular characterization of dengue viruses (DENV) that circulated during two smaller outbreaks (2017 and 2018) and one major epidemic (2019) in Tanzania., Methodology/principal Findings: We tested archived serum samples from 1,381 suspected dengue fever patients, with a median age of 29 (IQR:22-40) years, referred to the National Public Health Laboratory for confirmation of DENV infection. DENV serotypes were identified by reverse transcription polymerase chain reaction (RT-PCR), and specific genotypes were identified by sequencing the envelope glycoprotein gene and phylogenetic inference methods. DENV was confirmed in 823 (59.6%) cases. More than half (54.7%) of patients with dengue fever infection were males, and nearly three-quarters (73%) of the infected individuals were living in Kinondoni district, Dar es Salaam. DENV-3 Genotype III caused the two smaller outbreaks in 2017 and 2018, while DENV-1 Genotype V caused the 2019 epidemic. DENV-1 Genotype I was also detected in one patient in 2019., Conclusion/significance: This study has demonstrated the molecular diversity of dengue viruses circulating in Tanzania. We found that contemporary circulating serotypes did not cause the major epidemic of 2019 but rather due to a serotype shift from DENV-3 (2017/2018) to DENV-1 in 2019. Such a change increases the risk for patients previously infected with a particular serotype to develop severe symptoms upon potential re-infection with a heterologous serotype due to antibody-dependent enhancement of infection. Therefore, the circulation of serotypes emphasizes the need to strengthen the country's dengue surveillance system for better management of patients, early detection of outbreaks, and vaccine development., Competing Interests: The authors have declared that no competing interests exist., (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- Published
- 2023
- Full Text
- View/download PDF
15. The East African Community mobile laboratory network prepares for monkeypox outbreaks.
- Author
-
Gehre F, Lagu HI, Achol E, Omari N, Ochido G, Shand K, Alvarado AM, Ruge G, Kezakarayagwa E, Kabatesi F, Ihorimbere T, Nkeshimana A, Roba A, Ndia MN, Githii SM, Kiiru JN, Samson DD, Nykwec GA, Moun IGC, Deng LL, Kelly ME, Mkama PBM, Msigwa FL, Magesa A, Pimundu G, Muyigi T, Nabadda SN, Nzeyimana E, May J, and Affara M
- Abstract
In response to the largest recorded monkeypox virus outbreak outside of endemic Central and Western Africa, the East African Community (EAC), in cooperation with the Bernhard-Nocht- Institute for Tropical Medicine, coordinated an emergency monkeypox diagnostic training for the East African Region. As of June 2022, the Democratic Republic of Congo reported a steady increase of suspected monkeypox cases, increasing the risk of spill-over into the remaining six EAC Partner States. Within the existing EAC Mobile Laboratories project, laboratory experts of the National Public Health Laboratories of the remaining six EAC Partner States (Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan) participated in the workshop and were trained in the reception of suspect samples, DNA extraction and diagnosis using real-time polymerase chain reaction (RT-PCR). The EAC region is now equipped with the tools to prepare and rapidly respond to any emerging monkeypox outbreak., Competing Interests: Conflict of interest: the authors declare no potential conflict of interest., (©Copyright: the Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
16. Strain diversity and gene mutations associated with presumptive multidrug-resistant Mycobacterium tuberculosis complex isolates in Northwest Ethiopia.
- Author
-
Ejo M, Torrea G, Diro E, Abebe A, Kassa M, Girma Y, Tesfa E, Ejigu K, Uwizeye C, Gehre F, de Jong BC, and Rigouts L
- Subjects
- Humans, Antitubercular Agents pharmacology, Antitubercular Agents therapeutic use, Ethiopia, Drug Resistance, Multiple, Bacterial genetics, Mutation, Rifampin pharmacology, Mycobacterium tuberculosis
- Abstract
Objectives: In this study, we assessed the genetic diversity and gene mutations that confer resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolone (FQ), and second-line injectable (SLI) drugs in RIF-resistant (RR)/multidrug-resistant tuberculosis (MDR-TB) isolates in Northwest Ethiopia., Methods: Spoligotyping was used to assign isolates to TB lineages (Ls), and Hain line probe assays were used to detect resistance to RIF, INH, and FQs, and SLIs., Results: Among 130 analyzed strains, 68.5% were RR, and four major Mycobacterium tuberculosis complex lineages (L1, L3, L4, and L7) were identified with a predominance of the Euro-American L4 (72, 54.7%), while L7 genotypes were less common (3, 2.3%). Overall, the L4-T3-ETH (41, 32.0%), L3-CAS1-Delhi (29, 22.7%), and L3-CAS1-Killi (19, 14.8%) families were most common. Line probe analysis showed that among rpoB mutants, 65.2% were S450L, while 87.8% of katG mutants were S315T. Only three isolates showed mutation (c-15t) at the inhA gene, and no double mutation with katG and inhA genes was found. Six strains, two each of L1, L3, and L4, were resistant to FQs, having gyrA mutations (D94G, S91P), of which three isolates had additional resistance to SLI (rrs A1401G or C1402T mutations) including one isolate with low-level kanamycin (KAN) resistance., Conclusions: This study showed a predominance of L4-T3-ETH, L3-CAS1-Delhi, and L3-CAS1-Killi families, with a high rate of rpoB_S450L and katG_S315T mutations and a low proportion of gyrA and rrs mutations. L7 was less frequently observed in this study. Further investigations are, therefore, needed to understand L7 and other lineages with undefined mutations., Competing Interests: Declaration of Competing Interest The authors declare that they have no competing interests., (Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
17. The East African Community's mobile laboratory network's rapid response during the first 2 weeks of the Ebola Sudan virus disease (SVD) outbreak in Uganda and pandemic preparedness activities in South Sudan, Rwanda, Tanzania, Burundi, Kenya.
- Author
-
Gehre F, Lagu H, Achol E, Omari N, Ochido G, Duraffour S, Hinzmann J, Kezakarayagwa E, Kabatesi F, Nkeshimana A, Nyandwi J, Samson DD, Nykwec GA, Lokore ML, Deng LL, Kelly ME, Mkama PBM, Magesa A, Beyanga M, Roba A, Ndia M, Lokamar P, Kiiru J, Kabanda A, Mukagatare I, Kabalisa E, Rutayisire R, Sewanyana I, Nambozo EJ, Muyigi T, Pimundu G, May J, Katende M, Nabadda S, Nzeyimana E, and Affara M
- Subjects
- Humans, Kenya, Rwanda epidemiology, Uganda epidemiology, Tanzania, Burundi, South Sudan epidemiology, East African People, Disease Outbreaks prevention & control, Pandemics, Hemorrhagic Fever, Ebola epidemiology
- Abstract
Competing Interests: Competing interests: None declared.
- Published
- 2022
- Full Text
- View/download PDF
18. Pulmonary non-tuberculous mycobacteria in colonisation and disease in The Gambia.
- Author
-
Okoi C, Anderson ST, Mulwa S, Worwui A, Antonio M, Gehre F, and Adetifa I
- Subjects
- Humans, Young Adult, Adult, Nontuberculous Mycobacteria, RNA, Ribosomal, 16S genetics, Cross-Sectional Studies, Gambia epidemiology, Mycobacterium Infections, Nontuberculous diagnosis, Mycobacterium Infections, Nontuberculous epidemiology, Mycobacterium Infections, Nontuberculous microbiology, Tuberculosis, Pulmonary diagnosis, Tuberculosis, Pulmonary epidemiology, Tuberculosis, Pulmonary microbiology, Tuberculosis
- Abstract
The clinical relevance of pulmonary non-tuberculous mycobacteria (PNTM) in The Gambia is unknown. The aim of this study was to estimate the prevalence of non-tuberculous mycobacteria (NTM) in colonisation, and the burden of clinically relevant pulmonary NTM (PNTM) disease in The Gambia. This was a cross-sectional study of the prevalence of NTM in participants aged ≥ 15 years, in a nationwide tuberculosis (TB) prevalence survey between December 2011 and January 2013. We enrolled 903 participants with suspected NTM and NTM cultures were confirmed by 16S rRNA gene sequencing analyses. We applied the American Thoracic Society/Infectious Disease Society of America (ATS/IDSA) diagnostic criteria to determine clinical relevance of NTM. A total of 575 participants had acid-fast bacilli (AFB) positive Mycobacterial Growth Indicator Tube (MGIT) cultures and 229 (39.8%) were NTM. M. avium complex was by far the most isolated NTM (71.0%), followed by M. fortuitum (9.5%) and M. nonchromogenicum (2.9%). Older participants (> 24 years old) were four times more likely to have NTM in their sputa. Only 20.5% (9/44) NTM cases met the ATS/IDSA criteria for NTM disease. This study provides important data on the prevalence of NTM in pulmonary samples of suspected TB cases with AFB positive cultures from a nationally representative population in The Gambia. Enhanced PNTM surveillance is recommended to better understand the contribution of NTM to pulmonary disease., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
19. The East African Community (EAC) mobile laboratory networks in Kenya, Burundi, Tanzania, Rwanda, Uganda, and South Sudan-from project implementation to outbreak response against Dengue, Ebola, COVID-19, and epidemic-prone diseases.
- Author
-
Affara M, Lagu HI, Achol E, Karamagi R, Omari N, Ochido G, Kezakarayagwa E, Kabatesi F, Nkeshimana A, Roba A, Ndia MN, Abudo MU, Kabanda A, Mpabuka E, Mwikarago EI, Kutjok PE, Samson DD, Deng LL, Moremi N, Kelly ME, Mkama PBM, Magesa A, Balinandi SK, Pimundu G, Nabadda SN, Puradiredja DI, Hinzmann J, Duraffour S, Gabriel M, Ruge G, Loag W, Ayiko R, Sonoiya SS, May J, Katende MJ, and Gehre F
- Subjects
- Burundi epidemiology, COVID-19 therapy, Dengue prevention & control, Epidemics, Hemorrhagic Fever, Ebola prevention & control, Hemorrhagic Fever, Ebola therapy, Humans, Kenya epidemiology, Public Health, Rwanda epidemiology, SARS-CoV-2, South Sudan epidemiology, Tanzania epidemiology, Uganda epidemiology, COVID-19 prevention & control, Community Networks, Dengue epidemiology, Hemorrhagic Fever, Ebola epidemiology, Laboratories, Mobile Health Units economics
- Abstract
Background: East Africa is home to 170 million people and prone to frequent outbreaks of viral haemorrhagic fevers and various bacterial diseases. A major challenge is that epidemics mostly happen in remote areas, where infrastructure for Biosecurity Level (BSL) 3/4 laboratory capacity is not available. As samples have to be transported from the outbreak area to the National Public Health Laboratories (NPHL) in the capitals or even flown to international reference centres, diagnosis is significantly delayed and epidemics emerge., Main Text: The East African Community (EAC), an intergovernmental body of Burundi, Rwanda, Tanzania, Kenya, Uganda, and South Sudan, received 10 million € funding from the German Development Bank (KfW) to establish BSL3/4 capacity in the region. Between 2017 and 2020, the EAC in collaboration with the Bernhard-Nocht-Institute for Tropical Medicine (Germany) and the Partner Countries' Ministries of Health and their respective NPHLs, established a regional network of nine mobile BSL3/4 laboratories. These rapidly deployable laboratories allowed the region to reduce sample turn-around-time (from days to an average of 8h) at the centre of the outbreak and rapidly respond to epidemics. In the present article, the approach for implementing such a regional project is outlined and five major aspects (including recommendations) are described: (i) the overall project coordination activities through the EAC Secretariat and the Partner States, (ii) procurement of equipment, (iii) the established laboratory setup and diagnostic panels, (iv) regional training activities and capacity building of various stakeholders and (v) completed and ongoing field missions. The latter includes an EAC/WHO field simulation exercise that was conducted on the border between Tanzania and Kenya in June 2019, the support in molecular diagnosis during the Tanzanian Dengue outbreak in 2019, the participation in the Ugandan National Ebola response activities in Kisoro district along the Uganda/DRC border in Oct/Nov 2019 and the deployments of the laboratories to assist in SARS-CoV-2 diagnostics throughout the region since early 2020., Conclusions: The established EAC mobile laboratory network allows accurate and timely diagnosis of BSL3/4 pathogens in all East African countries, important for individual patient management and to effectively contain the spread of epidemic-prone diseases.
- Published
- 2021
- Full Text
- View/download PDF
20. Lessons Learned From a Large Cross-Border Field Simulation Exercise to Strengthen Emergency Preparedness in East Africa, 2019.
- Author
-
Njenge H, Copper F, Bell A, Charles D, Mullen L, de Vázquez CC, Wesonga T, Wakhungu JN, Katende M, Komba EA, Kituyi PNN, Mmbaga V, Nguvila T, Makata MA, Chinyuka H, de La Rocque S, Sreedharan R, Stephen M, Mayigane LN, Saguti GEB, Ganda N, Gachohi J, Nyaberi JM, Kabanda D, Marwa F, Mwatondo A, Mukora GG, Muinde JM, Komora S, Msangi C, Malinda BL, Uiso V, Mwaipopo C, Dulu TD, Gehre F, Affara M, Mutabazi F, Balikowa D, Kiarie SW, Kivuva J, Wambua C, Were W, Nyakundi PM, Makayotto L, Njoroge M, Kebaki GM, Swai ES, Mwakyusa EK, Kauki G, Fasina FO, Byoona K, Woldetsadik SF, Allan M, Wekesa J, Nanyunja M, Mutoka FB, Knaggs D, Nsenga N, Yahaya AA, Talisuna A, Omaar A, Ho ZJM, Kandel N, and Chungong S
- Subjects
- Africa, Eastern, Disease Outbreaks, Humans, Public Health, World Health Organization, Civil Defense, Disaster Planning
- Abstract
Field simulation exercises (FSXs) require substantial time, resources, and organizational experience to plan and implement and are less commonly undertaken than drills or tabletop exercises. Despite this, FSXs provide an opportunity to test the full scope of operational capacities, including coordination across sectors. From June 11 to 14, 2019, the East African Community Secretariat conducted a cross-border FSX at the Namanga One Stop Border Post between the Republic of Kenya and the United Republic of Tanzania. The World Health Organization Department of Health Security Preparedness was the technical lead responsible for developing and coordinating the exercise. The purpose of the FSX was to assess and further enhance multisectoral outbreak preparedness and response in the East Africa Region, using a One Health approach. Participants included staff from the transport, police and customs, public health, animal health, and food inspection sectors. This was the first FSX of this scale, magnitude, and complexity to be conducted in East Africa for the purpose of strengthening emergency preparedness capacities. The FSX provided an opportunity for individual learning and national capacity strengthening in emergency management and response coordination. In this article, we describe lessons learned and propose recommendations relevant to FSX design, management, and organization to inform future field exercises.
- Published
- 2021
- Full Text
- View/download PDF
21. Commentary: mobile laboratories for SARS-CoV-2 diagnostics: what Europe could learn from the East African Community to assure trade in times of border closures.
- Author
-
Gehre F, Lagu H, Achol E, Katende M, May J, and Affara M
- Subjects
- Africa, Eastern epidemiology, COVID-19 diagnosis, COVID-19 epidemiology, Europe epidemiology, Humans, COVID-19 prevention & control, COVID-19 Testing, Commerce organization & administration, Laboratories, Mobile Health Units, Travel legislation & jurisprudence
- Abstract
Background: The emergence of SARS-CoV-2 mutants might lead to European border closures, which impact on trade and result in serious economic losses. In April 2020, similar border closures were observed during the first SARS-CoV-2 wave in East Africa., Main Body: Since 2017 the East African Community EAC together with the Bernhard-Nocht-Institute for Tropical Medicine BNITM established a mobile laboratory network integrated into the National Public Health Laboratories of the six Partner States for molecular diagnosis of viral haemorrhagic fevers and SARS-CoV-2. Since May 2020, the National Public Health Laboratories of Kenya, Rwanda, Burundi, Uganda and South Sudan deployed these mobile laboratories to their respective borders, issuing a newly developed "Electronic EAC COVID-19 Digital Certificate" to SARS-CoV-2 PCR-negative truck drivers, thus assuring regional trade., Conclusion: Considering the large financial damages of border closures, such a mobile laboratory network as demonstrated in East Africa is cost-effective, easy to implement and feasible. The East African Community mobile laboratory network could serve as a blueprint for Europe and other countries around the globe.
- Published
- 2021
- Full Text
- View/download PDF
22. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history.
- Author
-
Coscolla M, Gagneux S, Menardo F, Loiseau C, Ruiz-Rodriguez P, Borrell S, Otchere ID, Asante-Poku A, Asare P, Sánchez-Busó L, Gehre F, Sanoussi CN, Antonio M, Affolabi D, Fyfe J, Beckert P, Niemann S, Alabi AS, Grobusch MP, Kobbe R, Parkhill J, Beisel C, Fenner L, Böttger EC, Meehan CJ, Harris SR, de Jong BC, Yeboah-Manu D, and Brites D
- Subjects
- Africa, Eastern, Africa, Western, Evolution, Molecular, Genome, Bacterial, High-Throughput Nucleotide Sequencing, Humans, Mycobacterium tuberculosis genetics, Mycobacterium tuberculosis isolation & purification, Phylogeny, Phylogeography, Drug Resistance, Bacterial, Mycobacterium tuberculosis classification, Tuberculosis microbiology, Whole Genome Sequencing methods
- Abstract
Human tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). The MTBC comprises several human-adapted lineages known as M. tuberculosis sensu stricto , as well as two lineages (L5 and L6) traditionally referred to as Mycobacterium africanum . Strains of L5 and L6 are largely limited to West Africa for reasons unknown, and little is known of their genomic diversity, phylogeography and evolution. Here, we analysed the genomes of 350 L5 and 320 L6 strains, isolated from patients from 21 African countries, plus 5 related genomes that had not been classified into any of the known MTBC lineages. Our population genomic and phylogeographical analyses showed that the unclassified genomes belonged to a new group that we propose to name MTBC lineage 9 (L9). While the most likely ancestral distribution of L9 was predicted to be East Africa, the most likely ancestral distribution for both L5 and L6 was the Eastern part of West Africa. Moreover, we found important differences between L5 and L6 strains with respect to their phylogeographical substructure and genetic diversity. Finally, we could not confirm the previous association of drug-resistance markers with lineage and sublineages. Instead, our results indicate that the association of drug resistance with lineage is most likely driven by sample bias or geography. In conclusion, our study sheds new light onto the genomic diversity and evolutionary history of M. africanum , and highlights the need to consider the particularities of each MTBC lineage for understanding the ecology and epidemiology of TB in Africa and globally.
- Published
- 2021
- Full Text
- View/download PDF
23. Genetic diversity of the Mycobacterium tuberculosis complex strains from newly diagnosed tuberculosis patients in Northwest Ethiopia reveals a predominance of East-African-Indian and Euro-American lineages.
- Author
-
Ejo M, Torrea G, Uwizeye C, Kassa M, Girma Y, Bekele T, Ademe Y, Diro E, Gehre F, Rigouts L, and de Jong BC
- Subjects
- Adult, Africa, Eastern, Americas, Animals, Drug Resistance, Bacterial, Ethiopia, Female, Genetic Variation, Genotype, Humans, India, Isoniazid pharmacology, Jupiter, Male, Mycobacterium tuberculosis drug effects, Mycobacterium tuberculosis genetics, Mycobacterium tuberculosis isolation & purification, Rifampin pharmacology, Tuberculosis, Lymph Node diagnosis, Tuberculosis, Pulmonary diagnosis, Young Adult, Mycobacterium tuberculosis classification, Tuberculosis, Lymph Node microbiology, Tuberculosis, Pulmonary microbiology
- Abstract
Objectives: This study described the population structure of M. tuberculosis complex (MTBc) strains among patients with pulmonary or lymph node tuberculosis (TB) in Northwest Ethiopia and tested the performance of culture isolation and MPT64-based speciation for Lineage 7 (L7)., Methods: Patients were recruited between April 2017 and June 2019 in North Gondar, Ethiopia. The MPT64 assay was used to confirm MTBc, and spoligotyping was used to characterize mycobacterial lineages. Line probe assay (LPA) was used to detect resistance to rifampicin and isoniazid., Results: Among 274 MTBc genotyped isolates, there were five MTBc lineages: L1-L4 and L7 were identified, with predominant East-African-Indian (L3) (53.6%) and Euro-American (L4) (40.1%) strains, and low prevalence (2.6%) of Ethiopia L7. The genotypes were similarly distributed between pulmonary and lymph node TB, and all lineages were equally isolated by culture and recognized as MTBc by the MPT64 assay. Additionally, LPA showed that 259 (94.5%) MTBc were susceptible to both rifampicin and isoniazid, and one (0.4%) was multi-drug resistant (resistant to both rifampicin and isoniazid)., Conclusion: These findings show that TB in North Gondar, Ethiopia, is mainly caused by L3 and L4 strains, with low rates of L7, confirmed as MTBc by MPT64 assay and with limited resistance to rifampicin and isoniazid., (Copyright © 2020. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
24. Evolution of Mycobacterium tuberculosis complex lineages and their role in an emerging threat of multidrug resistant tuberculosis in Bamako, Mali.
- Author
-
Senghore M, Diarra B, Gehre F, Otu J, Worwui A, Muhammad AK, Kwambana-Adams B, Kay GL, Sanogo M, Baya B, Orsega S, Doumbia S, Diallo S, de Jong BC, Pallen MJ, and Antonio M
- Subjects
- Adolescent, Adult, Cameroon, Child, Child, Preschool, Female, Genotype, Ghana, Humans, Infant, Infant, Newborn, Male, Mali, Mycobacterium tuberculosis classification, Mycobacterium tuberculosis isolation & purification, Phylogeny, Risk Factors, Tuberculosis diagnosis, Tuberculosis microbiology, Tuberculosis, Multidrug-Resistant microbiology, Young Adult, Mycobacterium tuberculosis genetics, Tuberculosis, Multidrug-Resistant diagnosis
- Abstract
In recent years Bamako has been faced with an emerging threat from multidrug resistant TB (MDR-TB). Whole genome sequence analysis was performed on a subset of 76 isolates from a total of 208 isolates recovered from tuberculosis patients in Bamako, Mali between 2006 and 2012. Among the 76 patients, 61(80.3%) new cases and 15(19.7%) retreatment cases, 12 (16%) were infected by MDR-TB. The dominant lineage was the Euro-American lineage, Lineage 4. Within Lineage 4, the Cameroon genotype was the most prevalent genotype (n = 20, 26%), followed by the Ghana genotype (n = 16, 21%). A sub-clade of the Cameroon genotype, which emerged ~22 years ago was likely to be involved in community transmission. A sub-clade of the Ghana genotype that arose approximately 30 years ago was an important cause of MDR-TB in Bamako. The Ghana genotype isolates appeared more likely to be MDR than other genotypes after controlling for treatment history. We identified a clade of four related Beijing isolates that included one MDR-TB isolate. It is a major concern to find the Cameroon and Ghana genotypes involved in community transmission and MDR-TB respectively. The presence of the Beijing genotype in Bamako remains worrying, given its high transmissibility and virulence.
- Published
- 2020
- Full Text
- View/download PDF
25. Comparative genomics shows differences in the electron transport and carbon metabolic pathways of Mycobacterium africanum relative to Mycobacterium tuberculosis and suggests an adaptation to low oxygen tension.
- Author
-
Ofori-Anyinam B, Riley AJ, Jobarteh T, Gitteh E, Sarr B, Faal-Jawara TI, Rigouts L, Senghore M, Kehinde A, Onyejepu N, Antonio M, de Jong BC, Gehre F, and Meehan CJ
- Subjects
- Adaptation, Physiological, Bacterial Proteins metabolism, DNA Mutational Analysis, Electron Transport Chain Complex Proteins metabolism, Gene Expression Regulation, Bacterial, Genotype, Mutation, Mycobacterium tuberculosis metabolism, Phenotype, Phylogeny, Bacterial Proteins genetics, Carbon metabolism, Electron Transport Chain Complex Proteins genetics, Energy Metabolism genetics, Mycobacterium tuberculosis genetics, Oxygen metabolism, Whole Genome Sequencing
- Abstract
The geographically restricted Mycobacterium africanum lineages (MAF) are primarily found in West Africa, where they account for a significant proportion of tuberculosis. Despite this phenomenon, little is known about the co-evolution of these ancient lineages with West Africans. MAF and M. tuberculosis sensu stricto lineages (MTB) differ in their clinical, in vitro and in vivo characteristics for reasons not fully understood. Therefore, we compared genomes of 289 MAF and 205 MTB clinical isolates from the 6 main human-adapted M. tuberculosis complex lineages, for mutations in their Electron Transport Chain and Central Carbon Metabolic pathway in order to explain these metabolic differences. Furthermore, we determined, in silico, whether each mutation could affect the function of genes encoding enzymes in these pathways. We found more mutations with the potential to affect enzymes in these pathways in MAF lineages compared to MTB lineages. We also found that similar mutations occurred in these pathways between MAF and some MTB lineages. Generally, our findings show further differences between MAF and MTB lineages that may have contributed to the MAF clinical and growth phenotype and indicate potential adaptation of MAF lineages to a distinct ecological niche, which we suggest includes areas characterized by low oxygen tension., Competing Interests: Declaration of competing interest The authors declare no competing financial interests., (Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
26. Pediatric Bacterial Meningitis Surveillance in Nigeria From 2010 to 2016, Prior to and During the Phased Introduction of the 10-Valent Pneumococcal Conjugate Vaccine.
- Author
-
Tagbo BN, Bancroft RE, Fajolu I, Abdulkadir MB, Bashir MF, Okunola OP, Isiaka AH, Lawal NM, Edelu BO, Onyejiaka N, Ihuoma CJ, Ndu F, Ozumba UC, Udeinya F, Ogunsola F, Saka AO, Fadeyi A, Aderibigbe SA, Abdulraheem J, Yusuf AG, Sylvanus Ndow P, Ogbogu P, Kanu C, Emina V, Makinwa OJ, Gehre F, Yusuf K, Braka F, Mwenda JM, Ticha JM, Nwodo D, Worwui A, Biey JN, Kwambana-Adams BA, and Antonio M
- Subjects
- Child, Preschool, Cost of Illness, Female, Haemophilus influenzae classification, Humans, Infant, Infant, Newborn, Longitudinal Studies, Male, Meningitis, Bacterial mortality, Neisseria meningitidis classification, Nigeria, Serogroup, Streptococcus pneumoniae classification, Hospitalization statistics & numerical data, Meningitis, Bacterial epidemiology, Meningitis, Bacterial prevention & control, Pneumococcal Vaccines administration & dosage, Sentinel Surveillance
- Abstract
Background: Historically, Nigeria has experienced large bacterial meningitis outbreaks with high mortality in children. Streptococcus pneumoniae (pneumococcus), Neisseria meningitidis (meningococcus), and Haemophilus influenzae are major causes of this invasive disease. In collaboration with the World Health Organization, we conducted longitudinal surveillance in sentinel hospitals within Nigeria to establish the burden of pediatric bacterial meningitis (PBM)., Methods: From 2010 to 2016, cerebrospinal fluid was collected from children <5 years of age, admitted to 5 sentinel hospitals in 5 Nigerian states. Microbiological and latex agglutination techniques were performed to detect the presence of pneumococcus, meningococcus, and H. influenzae. Species-specific polymerase chain reaction and serotyping/grouping were conducted to determine specific causative agents of PBM., Results: A total of 5134 children with suspected meningitis were enrolled at the participating hospitals; of these 153 (2.9%) were confirmed PBM cases. The mortality rate for those infected was 15.0% (23/153). The dominant pathogen was pneumococcus (46.4%: 71/153) followed by meningococcus (34.6%: 53/153) and H. influenzae (19.0%: 29/153). Nearly half the pneumococcal meningitis cases successfully serotyped (46.4%: 13/28) were caused by serotypes that are included in the 10-valent pneumococcal conjugate vaccine. The most prevalent meningococcal and H. influenzae strains were serogroup W and serotype b, respectively., Conclusions: Vaccine-type bacterial meningitis continues to be common among children <5 years in Nigeria. Challenges with vaccine introduction and coverage may explain some of these finding. Continued surveillance is needed to determine the distribution of serotypes/groups of meningeal pathogens across Nigeria and help inform and sustain vaccination policies in the country., (© The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America.)
- Published
- 2019
- Full Text
- View/download PDF
27. Ethical Considerations for Movement Mapping to Identify Disease Transmission Hotspots.
- Author
-
de Jong BC, Gaye BM, Luyten J, van Buitenen B, André E, Meehan CJ, O'Siochain C, Tomsu K, Urbain J, Grietens KP, Njue M, Pinxten W, Gehre F, Nyan O, Buvé A, Roca A, Ravinetto R, and Antonio M
- Subjects
- Cell Phone, Cost-Benefit Analysis, Disease Outbreaks, Geographic Information Systems, Humans, Informed Consent, Population Surveillance, Privacy, Risk Assessment, Communicable Diseases epidemiology, Communicable Diseases transmission, Ethics, Medical, Public Health Surveillance methods, Sentinel Surveillance
- Abstract
Traditional public health methods for detecting infectious disease transmission, such as contact tracing and molecular epidemiology, are time-consuming and costly. Information and communication technologies, such as global positioning systems, smartphones, and mobile phones, offer opportunities for novel approaches to identifying transmission hotspots. However, mapping the movements of potentially infected persons comes with ethical challenges. During an interdisciplinary meeting of researchers, ethicists, data security specialists, information and communication technology experts, epidemiologists, microbiologists, and others, we arrived at suggestions to mitigate the ethical concerns of movement mapping. These suggestions include a template Data Protection Impact Assessment that follows European Union General Data Protection Regulations.
- Published
- 2019
- Full Text
- View/download PDF
28. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology.
- Author
-
Meehan CJ, Moris P, Kohl TA, Pečerska J, Akter S, Merker M, Utpatel C, Beckert P, Gehre F, Lempens P, Stadler T, Kaswa MK, Kühnert D, Niemann S, and de Jong BC
- Subjects
- Democratic Republic of the Congo epidemiology, Female, Genotyping Techniques, Humans, Male, Alleles, Genome, Bacterial, Genotype, Mycobacterium tuberculosis genetics, Polymorphism, Single Nucleotide, Tuberculosis epidemiology, Tuberculosis genetics, Tuberculosis transmission
- Abstract
Background: Tracking recent transmission is a vital part of controlling widespread pathogens such as Mycobacterium tuberculosis. Multiple methods with specific performance characteristics exist for detecting recent transmission chains, usually by clustering strains based on genotype similarities. With such a large variety of methods available, informed selection of an appropriate approach for determining transmissions within a given setting/time period is difficult., Methods: This study combines whole genome sequence (WGS) data derived from 324 isolates collected 2005-2010 in Kinshasa, Democratic Republic of Congo (DRC), a high endemic setting, with phylodynamics to unveil the timing of transmission events posited by a variety of standard genotyping methods. Clustering data based on Spoligotyping, 24-loci MIRU-VNTR typing, WGS based SNP (Single Nucleotide Polymorphism) and core genome multi locus sequence typing (cgMLST) typing were evaluated., Findings: Our results suggest that clusters based on Spoligotyping could encompass transmission events that occurred almost 200 years prior to sampling while 24-loci-MIRU-VNTR often represented three decades of transmission. Instead, WGS based genotyping applying low SNP or cgMLST allele thresholds allows for determination of recent transmission events, e.g. in timespans of up to 10 years for a 5 SNP/allele cut-off., Interpretation: With the rapid uptake of WGS methods in surveillance and outbreak tracking, the findings obtained in this study can guide the selection of appropriate clustering methods for uncovering relevant transmission chains within a given time-period. For high resolution cluster analyses, WGS-SNP and cgMLST based analyses have similar clustering/timing characteristics even for data obtained from a high incidence setting., (Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
29. Comparative genomics of Mycobacterium africanum Lineage 5 and Lineage 6 from Ghana suggests distinct ecological niches.
- Author
-
Otchere ID, Coscollá M, Sánchez-Busó L, Asante-Poku A, Brites D, Loiseau C, Meehan C, Osei-Wusu S, Forson A, Laryea C, Yahayah AI, Baddoo A, Ansa GA, Aboagye SY, Asare P, Borrell S, Gehre F, Beckert P, Kohl TA, N'dira S, Beisel C, Antonio M, Niemann S, de Jong BC, Parkhill J, Harris SR, Gagneux S, and Yeboah-Manu D
- Subjects
- Ghana, Humans, Mycobacterium classification, Mycobacterium isolation & purification, Genetic Variation, Genome, Bacterial, Genomics, Genotype, Mycobacterium genetics, Tuberculosis microbiology
- Abstract
Mycobacterium africanum (Maf) causes a substantial proportion of human tuberculosis in some countries of West Africa, but little is known on this pathogen. We compared the genomes of 253 Maf clinical isolates from Ghana, including N = 175 Lineage 5 (L5) and N = 78 Lineage 6 (L6). We found that the genomic diversity of L6 was higher than in L5 despite the smaller sample size. Regulatory proteins appeared to evolve neutrally in L5 but under purifying selection in L6. Even though over 90% of the human T cell epitopes were conserved in both lineages, L6 showed a higher ratio of non-synonymous to synonymous single nucleotide variation in these epitopes overall compared to L5. Of the 10% human T cell epitopes that were variable, most carried mutations that were lineage-specific. Our findings indicate that Maf L5 and L6 differ in some of their population genomic characteristics, possibly reflecting different selection pressures linked to distinct ecological niches.
- Published
- 2018
- Full Text
- View/download PDF
30. Publisher Correction: Non-tuberculous Mycobacteria isolated from Pulmonary samples in sub-Saharan Africa - A Systematic Review and Meta Analyses.
- Author
-
Okoi C, Anderson STB, Antonio M, Mulwa SN, Gehre F, and Adetifa IMO
- Abstract
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
- Published
- 2018
- Full Text
- View/download PDF
31. A cross-sectional study of tuberculosis drug resistance among previously treated patients in a tertiary hospital in Accra, Ghana: public health implications of standardized regimens.
- Author
-
Forson A, Kwara A, Kudzawu S, Omari M, Otu J, Gehre F, de Jong B, and Antonio M
- Subjects
- Adult, Cross-Sectional Studies, Female, Ghana epidemiology, Humans, Male, Microbial Sensitivity Tests, Middle Aged, Prevalence, Public Health standards, Standard of Care, Tertiary Care Centers, Young Adult, Antitubercular Agents therapeutic use, Drug Resistance, Bacterial drug effects, Mycobacterium tuberculosis drug effects, Mycobacterium tuberculosis isolation & purification, Tuberculosis, Multidrug-Resistant drug therapy, Tuberculosis, Multidrug-Resistant epidemiology, Tuberculosis, Pulmonary drug therapy, Tuberculosis, Pulmonary epidemiology
- Abstract
Background: Mycobacterium tuberculosis drug resistance is a major challenge to the use of standardized regimens for tuberculosis (TB) therapy, especially among previously treated patients. We aimed to investigate the frequency and pattern of drug resistance among previously treated patients with smear-positive pulmonary tuberculosis at the Korle-Bu Teaching Hospital Chest Clinic, Accra., Methods: This was a cross-sectional survey of mycobacterial isolates from previously treated patients referred to the Chest Clinic Laboratory between October 2010 and October 2013. The Bactec MGIT 960 system for mycobactrerial culture and drug sensitivity testing (DST) was used for sputum culture of AFB smear-positive patients with relapse, treatment failure, failure of smear conversion, or default. Descriptive statistics were used to summarize patient characteristics, and frequency and patterns of drug resistance., Results: A total of 112 isolates were studied out of 155 from previously treated patients. Twenty contaminated (12.9%) and 23 non-viable isolates (14.8%) were excluded. Of the 112 studied isolates, 53 (47.3%) were pan-sensitive to all first-line drugs tested Any resistance (mono and poly resistance) to isoniazid was found in 44 isolates (39.3%) and any resistance to streptomycin in 43 (38.4%). Thirty-one (27.7%) were MDR-TB. Eleven (35.5%) out of 31 MDR-TB isolates were pre-XDR. MDR-TB isolates were more likely than non-MDR isolates to have streptomycin and ethambutol resistance., Conclusions: The main findings of this study were the high prevalence of MDR-TB and streptomycin resistance among previously treated TB patients, as well as a high prevalence of pre-XDR-TB among the MDR-TB patients, which suggest that first-line and second-line DST is essential to aid the design of effective regimens for these groups of patients in Ghana.
- Published
- 2018
- Full Text
- View/download PDF
32. Examining human paragonimiasis as a differential diagnosis to tuberculosis in The Gambia.
- Author
-
Morter R, Adetifa I, Antonio M, Touray F, de Jong BC, Gower CM, and Gehre F
- Subjects
- Adolescent, Adult, Aged, Child, Diagnosis, Differential, Female, Gambia epidemiology, Humans, Male, Middle Aged, Paragonimiasis epidemiology, Polymerase Chain Reaction, Tuberculosis epidemiology, Young Adult, Paragonimiasis diagnosis, Tuberculosis diagnosis
- Abstract
Objective: Paragonimiasis is a foodborne trematode infection of the lungs caused by Paragonimus spp., presenting clinically with similar symptoms to active tuberculosis (TB). Worldwide, an estimated 20.7 million people are infected with paragonimiasis, but relatively little epidemiological data exists for Africa. Given a recently reported case, we sought to establish whether paragonimiasis should be considered as an important differential diagnosis for human TB in The Gambia, West Africa., Results: We developed a novel PCR-based diagnostic test for Paragonimus species known to be found in West Africa, which we used to examine archived TB negative sputum samples from a cross-sectional study of volunteers with tuberculosis-like symptoms from communities in the Western coastal region of The Gambia. Based on a "zero patient" design for detection of rare diseases, 300 anonymised AFB smear negative sputum samples, randomly selected from 25 villages, were screened for active paragonimiasis by molecular detection of Paragonimus spp. DNA. No parasite DNA was found in any of the sputa of our patient group. Despite the recent case report, we found no evidence of active paragonimiasis infection masking as TB in the Western region of The Gambia.
- Published
- 2018
- Full Text
- View/download PDF
33. Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme.
- Author
-
Gower CM, Gehre F, Marques SR, Lamberton PHL, Lwambo NJ, and Webster JP
- Subjects
- Animals, Anthelmintics administration & dosage, Anthelmintics therapeutic use, Child, Genotype, Humans, National Health Programs, Praziquantel administration & dosage, Schistosoma mansoni drug effects, Schistosomiasis mansoni epidemiology, Tanzania epidemiology, Drug Resistance, Genetic Variation, Praziquantel therapeutic use, Schistosomiasis mansoni parasitology, Schistosomiasis mansoni prevention & control
- Abstract
Background: Schistosoma mansoni is a parasite of profound medical importance. Current control focusses on mass praziquantel (PZQ) treatment of populations in endemic areas, termed Preventative Chemotherapy (PC). Large-scale PC programmes exert prolonged selection pressures on parasites with the potential for, direct and/or indirect, emergence of drug resistance. Molecular methods can help monitor genetic changes of schistosome populations over time and in response to drug treatment, as well as estimate adult worm burdens through parentage analysis. Furthermore, methods such as in vitro drug sensitivity assays help phenotype in vivo parasite genotypic drug efficacy., Methods: We conducted combined in vitro PZQ efficacy testing with population genetic analyses of S. mansoni collected from children from two schools in 2010, five years after the introduction of a National Control Programme. Children at one school had received four annual PZQ treatments and the other school had received two mass treatments in total. We compared genetic differentiation, indices of genetic diversity, and estimated adult worm burden from parasites collected in 2010 with samples collected in 2005 (before the control programme began) and in 2006 (six months after the first PZQ treatment). Using 2010 larval samples, we also compared the genetic similarity of those with high and low in vitro sensitivity to PZQ., Results: We demonstrated that there were individual parasites with reduced PZQ susceptibility in the 2010 collections, as evidenced by our in vitro larval behavioural phenotypic assay. There was no evidence, however, that miracidia showing phenotypically reduced susceptibility clustered together genetically. Molecular analysis also demonstrated a significant reduction of adult worm load over time, despite little evidence of reduction in parasite infection intensity, as measured by egg output. Genetic diversity of infections did not reduce over time, despite changes in the genetic composition of the parasite populations., Conclusions: Genotypic and phenotypic monitoring did not indicate a selective sweep, as may be expected if PZQ treatment was selecting a small number of related "resistant" parasites, but there was evidence of genetic changes at the population level over time. Genetic data were used to estimate adult worm burdens, which unlike parasite infection intensity, showed reductions over time, suggesting the relaxation of negative density-dependent constraints on parasite fecundity with PZQ treatment. We thereby demonstrated that density-dependence in schistosome populations may complicate evaluation and monitoring of control programmes.
- Published
- 2017
- Full Text
- View/download PDF
34. Non-tuberculous Mycobacteria isolated from Pulmonary samples in sub-Saharan Africa - A Systematic Review and Meta Analyses.
- Author
-
Okoi C, Anderson STB, Antonio M, Mulwa SN, Gehre F, and Adetifa IMO
- Subjects
- Africa South of the Sahara epidemiology, Diagnosis, Differential, Diagnostic Tests, Routine, Humans, Lung Diseases diagnosis, Lung Diseases epidemiology, Mycobacterium Infections, Nontuberculous diagnosis, Mycobacterium Infections, Nontuberculous epidemiology, Prevalence, Tuberculosis, Pulmonary diagnosis, Tuberculosis, Pulmonary epidemiology, Lung Diseases microbiology, Mycobacterium Infections, Nontuberculous microbiology, Nontuberculous Mycobacteria physiology, Tuberculosis, Pulmonary microbiology
- Abstract
Pulmonary non-tuberculous mycobacterial (NTM) disease epidemiology in sub-Saharan Africa is not as well described as for pulmonary tuberculosis. Earlier reviews of global NTM epidemiology only included subject-level data from one sub-Saharan Africa country. We systematically reviewed the literature and searched PubMed, Embase, Popline, OVID and Africa Wide Information for articles on prevalence and clinical relevance of NTM detection in pulmonary samples in sub-Saharan Africa. We applied the American Thoracic Society/Infectious Disease Society of America criteria to differentiate between colonisation and disease. Only 37 articles from 373 citations met our inclusion criteria. The prevalence of pulmonary NTM colonization was 7.5% (95% CI: 7.2%-7.8%), and 75.0% (2325 of 3096) occurred in males, 16.5% (512 of 3096) in those previously treated for tuberculosis and Mycobacterium avium complex predominated (27.7% [95% CI: 27.2-28.9%]). In seven eligible studies, 27.9% (266 of 952) of participants had pulmonary NTM disease and M. kansasii with a prevalence of 69.2% [95% CI: 63.2-74.7%] was the most common cause of pulmonary NTM disease. NTM species were unidentifiable in 29.2% [2,623 of 8,980] of isolates. In conclusion, pulmonary NTM disease is a neglected and emerging public health disease and enhanced surveillance is required.
- Published
- 2017
- Full Text
- View/download PDF
35. Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria.
- Author
-
Senghore M, Otu J, Witney A, Gehre F, Doughty EL, Kay GL, Butcher P, Salako K, Kehinde A, Onyejepu N, Idigbe E, Corrah T, de Jong B, Pallen MJ, and Antonio M
- Subjects
- Adolescent, Adult, Antitubercular Agents pharmacology, Bacterial Proteins genetics, Cameroon epidemiology, Child, Child, Preschool, DNA Gyrase genetics, Drug Resistance, Multiple, Bacterial drug effects, Drug Resistance, Multiple, Bacterial genetics, Female, Humans, Infant, Infant, Newborn, Male, Mutation, Mycobacterium tuberculosis classification, Mycobacterium tuberculosis drug effects, Mycobacterium tuberculosis isolation & purification, Nigeria epidemiology, Phylogeny, Sequence Analysis, DNA, Tuberculosis, Multidrug-Resistant diagnosis, Young Adult, Genome, Bacterial, Mycobacterium tuberculosis genetics, Tuberculosis, Multidrug-Resistant epidemiology, Tuberculosis, Multidrug-Resistant microbiology
- Abstract
Nigeria has an emerging problem with multidrug-resistant tuberculosis (MDR-TB). Whole-genome sequencing was used to understand the epidemiology of tuberculosis and genetics of multi-drug resistance among patients from two tertiary referral centers in Southwest Nigeria. In line with previous molecular epidemiology studies, most isolates of Mycobacterium tuberculosis from this dataset belonged to the Cameroon clade within the Euro-American lineage. Phylogenetic analysis showed this clade was undergoing clonal expansion in this region, and suggests that it was involved in community transmission of sensitive and multidrug-resistant tuberculosis. Five patients enrolled for retreatment were infected with pre-extensively drug resistant (pre-XDR) due to fluoroquinolone resistance in isolates from the Cameroon clade. In all five cases resistance was conferred through a mutation in the gyrA gene. In some patients, genomic changes occurred in bacterial isolates during the course of treatment that potentially led to decreased drug susceptibility. We conclude that inter-patient transmission of resistant isolates, principally from the Cameroon clade, contributes to the spread of MDR-TB in this setting, underscoring the urgent need to curb the spread of multi-drug resistance in this region.
- Published
- 2017
- Full Text
- View/download PDF
36. Emergence and clonal transmission of multi-drug-resistant tuberculosis among patients in Chad.
- Author
-
Ba Diallo A, Ossoga GW, Daneau G, Lo S, Ngandolo R, Djaibé CD, Djouater B, Mboup S, de Jong BC, Diallo AG, and Gehre F
- Subjects
- Antitubercular Agents pharmacology, Chad epidemiology, Clone Cells, Communicable Diseases, Emerging epidemiology, Communicable Diseases, Emerging transmission, Female, Genotype, Humans, Male, Middle Aged, Mycobacterium tuberculosis drug effects, Mycobacterium tuberculosis genetics, Prevalence, Tuberculosis, Multidrug-Resistant epidemiology, Tuberculosis, Multidrug-Resistant transmission, Communicable Diseases, Emerging microbiology, Drug Resistance, Multiple, Bacterial, Genetic Variation, Mycobacterium tuberculosis isolation & purification, Tuberculosis, Multidrug-Resistant microbiology
- Abstract
Background: Emergence of Multidrug-resistant (MDR) strains constitutes a significant public health problem worldwide. Prevalence of MDR tuberculosis from Chad is unavailable to date., Methods: We collected samples from consecutive TB patients nationwide in the seven major cities of Chad between 2007 and 2012 to characterize drug resistance and the population structure of circulating Mycobacterium tuberculosis complex (MTBC) strains. We tested drug sensitivity using Line Probe Assays and phenotypic drug susceptibility testing (DST) were used for second line drugs. We genotyped the isolates using spoligotype analysis and MIRU-VNTR., Results: A total of 311 cultures were isolated from 593 patients. The MDR prevalence was 0.9% among new patients and 3.5% among retreatment patients, and no second line drug resistance was identified. The distribution of genotypes suggests a dissemination of MDR strains in the Southern city of Moundou, bordering Cameroon and Central African Republic., Conclusion: Emerging MDR isolates pose a public health threat to Southern Chad, with risk to neighboring countries. This study informs public health practitioners, justifying the implementation of continuous surveillance with DST for all retreatment cases as well as contacts of MDR patients, in parallel with provision of adequate 2nd line regimens in the region.
- Published
- 2017
- Full Text
- View/download PDF
37. Significant under expression of the DosR regulon in M. tuberculosis complex lineage 6 in sputum.
- Author
-
Ofori-Anyinam B, Dolganov G, Van T, Davis JL, Walter ND, Garcia BJ, Voskuil M, Fissette K, Diels M, Driesen M, Meehan CJ, Yeboah-Manu D, Coscolla M, Gagneux S, Antonio M, Schoolnik G, Gehre F, and de Jong BC
- Subjects
- Adaptation, Physiological, DNA-Binding Proteins, Gambia epidemiology, Gene Expression Regulation, Bacterial, Genotype, Ghana epidemiology, Humans, Molecular Epidemiology, Mycobacterium tuberculosis growth & development, Mycobacterium tuberculosis isolation & purification, Oxygen metabolism, Phenotype, Polymorphism, Single Nucleotide, Tuberculosis, Pulmonary epidemiology, Bacterial Proteins genetics, Mycobacterium tuberculosis genetics, Protein Kinases genetics, Sputum microbiology, Tuberculosis, Pulmonary microbiology
- Abstract
Mycobacterium africanum lineage (L) 6 is an important pathogen in West Africa, causing up to 40% of pulmonary tuberculosis (TB). The biology underlying the clinical differences between M. africanum and M. tuberculosis sensu stricto remains poorly understood. We performed ex vivo expression of 2179 genes of the most geographically dispersed cause of human TB, M. tuberculosis L4 and the geographically restricted, M. africanum L6 directly from sputa of 11 HIV-negative TB patients from The Gambia who had not started treatment. The DosR regulon was the most significantly decreased category in L6 relative to L4. Further, we identified nonsynonymous mutations in major DosR regulon genes of 44 L6 genomes of TB patients from The Gambia and Ghana. Using Lebek's test, we assessed differences in oxygen requirements for growth. L4 grew only at the aerobic surface while L6 grew throughout the medium. In the host, the DosR regulon is critical for M. tuberculosis in adaptation to oxygen limitation. However, M. africanum L6 appears to have adapted to growth under hypoxic conditions or to different biological niches. The observed under expression of DosR in L6 fits with the genomic changes in DosR genes, microaerobic growth and the association with extrapulmonary disease., (Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
38. Learning from epidemiological, clinical, and immunological studies on Mycobacterium africanum for improving current understanding of host-pathogen interactions, and for the development and evaluation of diagnostics, host-directed therapies, and vaccines for tuberculosis.
- Author
-
Zumla A, Otchere ID, Mensah GI, Asante-Poku A, Gehre F, Maeurer M, Bates M, Mwaba P, Ntoumi F, and Yeboah-Manu D
- Subjects
- Africa, Western epidemiology, Genotype, Humans, Molecular Typing, Mycobacterium classification, Mycobacterium genetics, Phylogeny, Prevalence, Sputum microbiology, Host-Pathogen Interactions immunology, Mycobacterium immunology, Mycobacterium pathogenicity, Tuberculosis diagnosis, Tuberculosis epidemiology, Tuberculosis prevention & control, Tuberculosis therapy, Tuberculosis Vaccines immunology
- Abstract
Mycobacterium africanum comprises two phylogenetic lineages within the Mycobacterium tuberculosis complex (MTBC). M. africanum was first described and isolated in 1968 from the sputum of a Senegalese patient with pulmonary tuberculosis (TB) and it has been identified increasingly as an important cause of human TB, particularly prevalent in West Africa. The restricted geographical distribution of M. africanum, in contrast to the widespread global distribution of other species of MTBC, requires explanation. Available data indicate that M. africanum may also have important differences in transmission, pathogenesis, and host-pathogen interactions, which could affect the evaluation of new TB intervention tools (diagnostics and vaccines)-those currently in use and those under development. The unequal geographical distribution and spread of MTBC species means that individual research findings from one country or region cannot be generalized across the continent. Thus, generalizing data from previous and ongoing research studies on MTBC may be inaccurate and inappropriate. A major rethink is required regarding the design and structure of future clinical trials of new interventions. The West, Central, East, and Southern African EDCTP Networks of Excellence provide opportunities to take forward these pan-Africa studies. More investments into molecular, epidemiological, clinical, diagnostic, and immunological studies across the African continent are required to enable further understanding of host-M. africanum interactions, leading to the development of more specific diagnostics, biomarkers, host-directed therapies, and vaccines for TB., (Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
39. The Biology and Epidemiology of Mycobacterium africanum.
- Author
-
Yeboah-Manu D, de Jong BC, and Gehre F
- Subjects
- Africa, Western epidemiology, Animals, Antitubercular Agents therapeutic use, Bacterial Typing Techniques, Humans, Molecular Epidemiology, Mycobacterium growth & development, Mycobacterium pathogenicity, Phenotype, Phylogeography, Prevalence, Pyrazinamide therapeutic use, Tuberculosis, Pulmonary diagnosis, Tuberculosis, Pulmonary drug therapy, Tuberculosis, Pulmonary transmission, Virulence, Genetic Variation, Genome, Bacterial, Mycobacterium classification, Mycobacterium genetics, Phylogeny, Tuberculosis, Pulmonary epidemiology
- Abstract
West Africa is the only region in the world where six out of seven mycobacterial lineages of human importance are endemic. In particular, two evolutionary ancient lineages, Mycobacterium africanum West Africa 1 (MTBC Lineage 5) and M. africanum West Africa 2 (MTBC Lineage 6) are of interest as they cause up to 40% of all pulmonary TB cases in some West African countries. Although these M. africanum lineages are closely related to M. tuberculosis sensu stricto lineages, they differ significantly in respect to biology, epidemiology and in their potential to cause disease in humans. Most importantly the M. africanum lineages are exclusive to West Africa. Although the exact mechanisms underlying this geographical restriction are still not understood, it is increasingly suspected that this is due to an adaptation of the bacteria to West African host populations. In this chapter, we summarize the geographical distribution of the M. africanum lineages within the region, describe biological and clinical differences and the consequent implications for TB control in West Africa. We also try to shed light on the geographical restriction, based on recently published analyses on whole genomes of M. africanum isolates.
- Published
- 2017
- Full Text
- View/download PDF
40. Evaluation of the Kudoh method for mycobacterial culture: Gambia experience.
- Author
-
Jobarteh T, Otu J, Gitteh E, Mendy F, Faal-Jawara TI, Ofori-Anyinam B, Ayorinde A, Secka O, Antonio M, and Gehre F
- Abstract
Objective/background: To evaluate the Kudoh swab method for improving laboratory diagnosis of tuberculosis (TB) in Gambia., Methods: A total of 75 sputa (50 smear positive and 25 smear negative) were examined. Sputum samples were collected from leftover routine samples from the Medical Research Council Unit, Gambia TB Diagnostic Laboratory. The samples were processed using the standard N-acetyl-l-cysteine-NaOH (NALC-NaOH) methods currently used and Kudoh swab method. These were cultured on standard Lowenstein Jensen (LJ) and Modified Ogawa media, respectively, and incubated aerobically at 36±1°C for mycobacterial growth. To determine if the decontamination and culture methods compared could equally detect the Mycobacterium tuberculosis complex (MTBC) highly commonly isolated in Gambia, spoligotyping was done., Results: In total, 72% (54/75) of MTBC were recovered by both LJ and Modified Ogawa methods. The LJ method recovered 52% (39/75) and Modified Ogawa recovered 56% (42/75) of the MTBC, respectively. Spoligotyping showed Euro-American 35% (19/54), Indo-Oceanic 35% (19/54), Mycobacterium africanum (West African type 2) 26% (14/54), Beijing 2% (1/54), and M. africanum (West African type 1) 2% (1/54)., Conclusion: The Kudoh method is simpler and cheaper than the NALC-NaOH method. There was no significant difference in recovery between the methods. The Kudoh method is ideal in overburdened TB laboratories with poor resources in developing countries. The predominant lineages were Euro-American and Indo-Oceanic, followed by M. africanum (West African type 2)., (Copyright © 2016.)
- Published
- 2016
- Full Text
- View/download PDF
41. Evaluation of sodium hydroxide-N-acetyl-l-cysteine and 0.7% chlorhexidine decontamination methods for recovering Mycobacterium tuberculosis from sputum samples: A comparative analysis (The Gambia Experience).
- Author
-
Gitteh E, Kweku Otu J, Jobarteh T, Mendy F, Faal-Jawara IT, Ofori-Anyinam NB, Ayorinde A, Secka O, and Gehre F
- Abstract
Objective/background: To determine the culture yield and time to detection of mycobacterial growth between samples decontaminated using 0.7% chlorhexidine and sodium hydroxide-N-acetyl-l-cysteine (NaOH-NALC) and cultured on the Löwenstein-Jensen (LJ) medium. We also aimed to determine the contamination rate between the 0.7% chlorhexidine and NaOH-NALC decontamination methods., Methods: The study was carried out on 68 sputa samples (42 smear positives and 26 smear negatives). Of these 68 samples, 46 were collected from men and 26 from women with an approximate average age of 27years. All the sputum samples were decontaminated using the standard NaOH-NALC and 0.7% chlorhexidine methods. The concentrates were cultured in parallel on LJ media in which reading of the slope for mycobacterial growth was obtained daily for the first 2weeks and then weekly until week 8. The mycobacterial recovery rate, time to detection, and contamination rate were then compared., Results: The overall recovery rate of mycobacterial growth on samples treated with both decontamination methods inoculated on LJ media is 51.5% (35/68). Specifically, mycobacterial growth rates on samples treated with 0.7% chlorhexidine and standard NaOH-NALC on LJ media were 61.8% (42/68) and 54.4% (37/68), respectively. However, the growth of Mycobacterium tuberculosis complex was faster on samples treated with 0.7% chlorhexidine than those treated with NaOH-NALC (average, 32±5days vs. 33±5.2days, respectively). The contamination rate on samples treated with 0.7% chlorhexidine was 1.5% (1/68), whereas on those treated with NaOH-NALC, the rate was 4.4% (3/68)., Conclusion: The 0.7% chlorhexidine decontamination method is rapid and has less contamination rate in terms of mycobacterial recovery compared with the standard NaOH-NALC method. Therefore, the 0.7% chlorhexidine decontamination method would be an ideal alternative option for decontamination of sputum samples and recovery/isolation of M. tuberculosis in resource-poor countries., (Copyright © 2016.)
- Published
- 2016
- Full Text
- View/download PDF
42. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages.
- Author
-
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Tudo Vilanova G, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Henry Boom W, Basu I, Bower J, Saraiva M, Vaconcellos SEG, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Wangui Ndung'u P, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Jane Carter E, Diero L, Supply P, Comas I, Niemann S, and Gagneux S
- Subjects
- Genotype, Global Health, Humans, Mycobacterium tuberculosis isolation & purification, Phylogeography, Tuberculosis genetics, DNA, Bacterial analysis, Genomics methods, Mycobacterium tuberculosis classification, Mycobacterium tuberculosis genetics, Polymorphism, Genetic genetics, Tuberculosis microbiology
- Abstract
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration., Competing Interests: Statement The authors have no competing interests as defined by Springer Nature, or other interests that might be perceived to influence the results and/or discussion reported in this paper.
- Published
- 2016
- Full Text
- View/download PDF
43. The emerging threat of pre-extensively drug-resistant tuberculosis in West Africa: preparing for large-scale tuberculosis research and drug resistance surveillance.
- Author
-
Gehre F, Otu J, Kendall L, Forson A, Kwara A, Kudzawu S, Kehinde AO, Adebiyi O, Salako K, Baldeh I, Jallow A, Jallow M, Dagnra A, Dissé K, Kadanga EA, Idigbe EO, Onubogu C, Onyejepu N, Gaye-Diallo A, Ba-Diallo A, Rabna P, Mane M, Sanogo M, Diarra B, Dezemon Z, Sanou A, Senghore M, Kwambana-Adams BA, Demba E, Faal-Jawara T, Kumar S, Tientcheu LD, Jallow A, Ceesay S, Adetifa I, Jaye A, Pallen MJ, D'Alessandro U, Kampmann B, Adegbola RA, Mboup S, Corrah T, de Jong BC, and Antonio M
- Subjects
- Adult, Africa, Western epidemiology, Antitubercular Agents therapeutic use, Extensively Drug-Resistant Tuberculosis diagnosis, Extensively Drug-Resistant Tuberculosis drug therapy, Female, Humans, Male, Mycobacterium tuberculosis isolation & purification, Prevalence, World Health Organization, Extensively Drug-Resistant Tuberculosis epidemiology, Practice Guidelines as Topic
- Abstract
Background: Drug-resistant tuberculosis (TB) is a global public health problem. Adequate management requires baseline drug-resistance prevalence data. In West Africa, due to a poor laboratory infrastructure and inadequate capacity, such data are scarce. Therefore, the true extent of drug-resistant TB was hitherto undetermined. In 2008, a new research network, the West African Network of Excellence for Tuberculosis, AIDS and Malaria (WANETAM), was founded, comprising nine study sites from eight West African countries (Burkina Faso, The Gambia, Ghana, Guinea-Bissau, Mali, Nigeria, Senegal and Togo). The goal was to establish Good Clinical Laboratory Practice (GCLP) principles and build capacity in standardised smear microscopy and mycobacterial culture across partnering laboratories to generate the first comprehensive West African drug-resistance data., Methods: Following GCLP and laboratory training sessions, TB isolates were collected at sentinel referral sites between 2009-2013 and tested for first- and second-line drug resistance., Results: From the analysis of 974 isolates, an unexpectedly high prevalence of multi-drug-resistant (MDR) strains was found in new (6 %) and retreatment patients (35 %) across all sentinel sites, with the highest prevalence amongst retreatment patients in Bamako, Mali (59 %) and the two Nigerian sites in Ibadan and Lagos (39 % and 66 %). In Lagos, MDR is already spreading actively amongst 32 % of new patients. Pre-extensively drug-resistant (pre-XDR) isolates are present in all sites, with Ghana showing the highest proportion (35 % of MDR). In Ghana and Togo, pre-XDR isolates are circulating amongst new patients., Conclusions: West African drug-resistance prevalence poses a previously underestimated, yet serious public health threat, and our estimates obtained differ significantly from previous World Health Organisation (WHO) estimates. Therefore, our data are reshaping current concepts and are essential in informing WHO and public health strategists to implement urgently needed surveillance and control interventions in West Africa.
- Published
- 2016
- Full Text
- View/download PDF
44. Impact of the Mycobaterium africanum West Africa 2 Lineage on TB Diagnostics in West Africa: Decreased Sensitivity of Rapid Identification Tests in The Gambia.
- Author
-
Ofori-Anyinam B, Kanuteh F, Agbla SC, Adetifa I, Okoi C, Dolganov G, Schoolnik G, Secka O, Antonio M, de Jong BC, and Gehre F
- Subjects
- Adolescent, Adult, Aged, Antigens, Bacterial analysis, Bacterial Proteins analysis, Female, Gambia, Humans, Male, Middle Aged, Mycobacterium tuberculosis classification, Mycobacterium tuberculosis genetics, Prospective Studies, Sensitivity and Specificity, Sputum microbiology, Tuberculosis, Pulmonary diagnosis, Young Adult, Bacterial Typing Techniques methods, Mycobacterium tuberculosis isolation & purification, Tuberculosis, Pulmonary microbiology
- Abstract
Background: MPT64 rapid speciation tests are increasingly being used in diagnosis of tuberculosis (TB). Mycobacterium africanum West Africa 2 (Maf 2) remains an important cause of TB in West Africa and causes one third of disease in The Gambia. Since the introduction of MPT64 antigen tests, a higher than expected rate of suspected non-tuberculous mycobacteria (NTM) was seen among AFB smear positive TB suspects, which led us to prospectively assess sensitivity of the MPT64 antigen test in our setting., Methodology/principal Findings: We compared the abundance of mRNA encoded by the mpt64 gene in sputa of patients with untreated pulmonary TB caused by Maf 2 and Mycobacterium tuberculosis (Mtb). Subsequently, prospectively collected sputum samples from presumptive TB patients were inoculated in the BACTEC MGIT 960 System. One hundred and seventy-three acid fast bacilli (AFB)-positive and blood agar negative MGIT cultures were included in the study. Cultures were tested on the day of MGIT positivity with the BD MGIT TBc Identification Test. A random set of positives and all negatives were additionally tested with the SD Bioline Ag MPT64 Rapid. MPT64 negative cultures were further incubated at 37°C and retested until positive. Bacteria were spoligotyped and assigned to different lineages. Maf 2 isolates were 2.52-fold less likely to produce a positive test result and sensitivity ranged from 78.4% to 84.3% at the beginning and end of the recommended 10 day testing window, respectively. There was no significant difference between the tests. We further showed that the decreased rapid test sensitivity was attributable to variations in mycobacterial growth behavior and the smear grades of the patient., Conclusions/significance: In areas where Maf 2 is endemic MPT64 tests should be cautiously used and MPT64 negative results confirmed by a second technique, such as nucleic acid amplification tests, to avoid their misclassification as NTMs.
- Published
- 2016
- Full Text
- View/download PDF
45. Drug resistance profiles of new- and previously treated patients with pulmonary tuberculosis in Ibadan, Nigeria.
- Author
-
Kehinde AO, Adebiyi EO, Salako AO, Ogunleye VO, Oni AA, Bakare RA, Eltayeb O, Dairo G, Out J, Gehre F, Corrah T, Deun AV, Gumusoboga M, Declercq E, Demeulenaere T, deJong BC, and Antonio M
- Subjects
- Adult, Aged, Antitubercular Agents therapeutic use, Child, Female, Humans, Infant, Newborn, Male, Medication Therapy Management, Microbial Sensitivity Tests, Nigeria epidemiology, Prevalence, Extensively Drug-Resistant Tuberculosis etiology, Extensively Drug-Resistant Tuberculosis prevention & control, Mycobacterium tuberculosis drug effects, Mycobacterium tuberculosis isolation & purification, Tuberculosis, Pulmonary diagnosis, Tuberculosis, Pulmonary drug therapy, Tuberculosis, Pulmonary epidemiology, Tuberculosis, Pulmonary microbiology
- Abstract
Background: Information on TB drug resistance profiles and its' associated risk factors are scarce in Nigeria despite the large burden of disease in the country. The study was designed to report drug resistance profiles of new- and previously treated patients with pulmonary tuberculosis (TB) in Ibadan, Nigeria., Method: Sputum from consenting pulmonary TB patients were collected and cultured for Mycobacterium tuberculosis (Mtb) at the TB laboratory of the University College Hospital, Ibadan, Nigeria using standard method. Mtb were stored and sent for drug susceptibility testing against first and second-line anti-TB drugs at the MRC Unit, The Gambia and at the Institute of Tropical Medicine, Antwerp, Belgium using BACTEC MGIT 960 and proportion method on solid medium respectively., Results: Of 238 Mtb collected, 124 (52.1%) were viable, 102 (59.65%) non-viable while 12 (7.02%) were contaminated. About half (58.87%) of the Mtb were from previously treated patients, 40 (32.26%) were from new patients while treatment history of 1.1 (8.87%) were unknown. Forty-seven (37.90%) of the 124 Mtb. tested were multidrug resistant (MDR) out of which, 40 (85.10%) were from previously treated patients.. HIV prevalence was 8.69%. Of the 17 MDR-TB from previously treated cases tested for second-line drugs, four (23.53%) were resistant to fluoroquinolones or injectable agents, 13 (76.47%) were susceptible while none was resistant to both of these classes of drugs., Conclusion: MDR-TB in Ibadan already demonstrates resistance to second line anti-TB drugs hence management of MDR-TB patients should be strengthened to prevent emergence of extensively drug-resistant TB (XDR-TB).
- Published
- 2016
46. A Mycobacterial Perspective on Tuberculosis in West Africa: Significant Geographical Variation of M. africanum and Other M. tuberculosis Complex Lineages.
- Author
-
Gehre F, Kumar S, Kendall L, Ejo M, Secka O, Ofori-Anyinam B, Abatih E, Antonio M, Berkvens D, and de Jong BC
- Subjects
- Africa, Western epidemiology, Humans, Longitudinal Studies, Mycobacterium isolation & purification, Genotype, Molecular Typing, Mycobacterium classification, Mycobacterium genetics, Phylogeography, Tuberculosis epidemiology, Tuberculosis microbiology
- Abstract
Background: Phylogenetically distinct Mycobacterium tuberculosis lineages differ in their phenotypes and pathogenicity. Consequently, understanding mycobacterial population structures phylogeographically is essential for design, interpretation and generalizability of clinical trials. Comprehensive efforts are lacking to date to establish the West African mycobacterial population structure on a sub-continental scale, which has diagnostic implications and can inform the design of clinical TB trials., Methodology/principal Findings: We collated novel and published genotyping (spoligotyping) data and classified spoligotypes into mycobacterial lineages/families using TBLineage and Spotclust, followed by phylogeographic analyses using statistics (logistic regression) and lineage axis plot analysis in GenGIS, in which a phylogenetic tree constructed in MIRU-VNTRplus was analysed. Combining spoligotyping data from 16 previously published studies with novel data from The Gambia, we obtained a total of 3580 isolates from 12 countries and identified 6 lineages comprising 32 families. By using stringent analytical tools we demonstrate for the first time a significant phylogeographic separation between western and eastern West Africa not only of the two M. africanum (West Africa 1 and 2) but also of several major M. tuberculosis sensu stricto families, such as LAM10 and Haarlem 3. Moreover, in a longitudinal logistic regression analysis for grouped data we showed that M. africanum West Africa 2 remains a persistent health concern., Conclusions/significance: Because of the geographical divide of the mycobacterial populations in West Africa, individual research findings from one country cannot be generalized across the whole region. The unequal geographical family distribution should be considered in placement and design of future clinical trials in West Africa.
- Published
- 2016
- Full Text
- View/download PDF
47. M. tuberculosis T Cell Epitope Analysis Reveals Paucity of Antigenic Variation and Identifies Rare Variable TB Antigens.
- Author
-
Coscolla M, Copin R, Sutherland J, Gehre F, de Jong B, Owolabi O, Mbayo G, Giardina F, Ernst JD, and Gagneux S
- Subjects
- Antigenic Variation, Antigens, Bacterial genetics, Genetic Variation, Genome, Bacterial, Humans, Mycobacterium tuberculosis classification, Phylogeny, Tuberculosis immunology, Antigens, Bacterial immunology, Epitopes, T-Lymphocyte genetics, Epitopes, T-Lymphocyte immunology, Immune Evasion, Mycobacterium tuberculosis genetics, Mycobacterium tuberculosis immunology, Tuberculosis microbiology
- Abstract
Pathogens that evade adaptive immunity typically exhibit antigenic variation. By contrast, it appears that although the chronic human tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis needs to counter host T cell responses, its T cell epitopes are hyperconserved. Here we present an extensive analysis of the T cell epitopes of M. tuberculosis. We combined population genomics with experimental immunology to determine the number and identity of T cell epitope sequence variants in 216 phylogenetically diverse strains of M. tuberculosis. Antigen conservation is indeed a hallmark of M. tuberculosis. However, our analysis revealed a set of seven variable antigens that were immunogenic in subjects with active TB. These findings suggest that M. tuberculosis uses mechanisms other than antigenic variation to evade T cells. T cell epitopes that exhibit sequence variation may not be subject to the same evasion mechanisms, and hence vaccines that include such variable epitopes may be more efficacious.
- Published
- 2015
- Full Text
- View/download PDF
48. First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.
- Author
-
Ejo M, Gehre F, Barry MD, Sow O, Bah NM, Camara M, Bah B, Uwizeye C, Nduwamahoro E, Fissette K, De Rijk P, Merle C, Olliaro P, Burgos M, Lienhardt C, Rigouts L, and de Jong BC
- Subjects
- Antitubercular Agents pharmacology, Guinea, Humans, Microbial Sensitivity Tests, Mycobacterium tuberculosis genetics, Prevalence, Tuberculosis, Multidrug-Resistant epidemiology, Tuberculosis, Multidrug-Resistant microbiology, Tuberculosis, Pulmonary epidemiology, Tuberculosis, Pulmonary microbiology, Bacteremia, Drug Resistance, Microbial, Mycobacterium tuberculosis classification, Mycobacterium tuberculosis drug effects, Tuberculosis epidemiology, Tuberculosis microbiology
- Abstract
In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs., (Copyright © 2015. Published by Elsevier B.V.)
- Published
- 2015
- Full Text
- View/download PDF
49. Shifts in Mycobacterial Populations and Emerging Drug-Resistance in West and Central Africa.
- Author
-
Gehre F, Ejo M, Fissette K, de Rijk P, Uwizeye C, Nduwamahoro E, Goovaerts O, Affolabi D, Gninafon M, Lingoupou FM, Barry MD, Sow O, Merle C, Olliaro P, Ba F, Sarr M, Piubello A, Noeske J, Antonio M, Rigouts L, and de Jong BC
- Subjects
- Africa, Central, Africa, Western, Antitubercular Agents pharmacology, Genotyping Techniques, Mycobacterium tuberculosis isolation & purification, Phylogeny, Retreatment, Retrospective Studies, Tuberculosis drug therapy, Tuberculosis epidemiology, Tuberculosis microbiology, Drug Resistance, Bacterial, Mycobacterium tuberculosis drug effects, Mycobacterium tuberculosis genetics
- Abstract
In this study, we retrospectively analysed a total of 605 clinical isolates from six West or Central African countries (Benin, Cameroon, Central African Republic, Guinea-Conakry, Niger and Senegal). Besides spoligotyping to assign isolates to ancient and modern mycobacterial lineages, we conducted phenotypic drug-susceptibility-testing for each isolate for the four first-line drugs. We showed that phylogenetically modern Mycobacterium tuberculosis strains are more likely associated with drug resistance than ancient strains and predict that the currently ongoing replacement of the endemic ancient by a modern mycobacterial population in West/Central Africa might result in increased drug resistance in the sub-region.
- Published
- 2014
- Full Text
- View/download PDF
50. The first phylogeographic population structure and analysis of transmission dynamics of M. africanum West African 1--combining molecular data from Benin, Nigeria and Sierra Leone.
- Author
-
Gehre F, Antonio M, Faïhun F, Odoun M, Uwizeye C, de Rijk P, de Jong BC, and Affolabi D
- Subjects
- Benin, Genotyping Techniques, Humans, Nigeria, Phylogeography, Sierra Leone, Disease Transmission, Infectious, Mycobacterium classification, Mycobacterium genetics
- Abstract
Mycobacterium africanum is an important cause of tuberculosis (TB) in West Africa. So far, two lineages called M. africanum West African 1 (MAF1) and M. africanum West African 2 (MAF2) have been defined. Although several molecular studies on MAF2 have been conducted to date, little is known about MAF1. As MAF1 is mainly present in countries around the Gulf of Guinea we aimed to estimate its prevalence in Cotonou, the biggest city in Benin. Between 2005-06 we collected strains in Cotonou/Benin and genotyped them using spoligo- and 12-loci-MIRU-VNTR-typing. Analyzing 194 isolates, we found that 31% and 6% were MAF1 and MAF2, respectively. Therefore Benin is one of the countries with the highest prevalence (37%) of M. africanum in general and MAF1 in particular. Moreover, we combined our data from Benin with publicly available genotyping information from Nigeria and Sierra Leone, and determined the phylogeographic population structure and genotypic clustering of MAF1. Within the MAF1 lineage, we identified an unexpected great genetic variability with the presence of at least 10 sub-lineages. Interestingly, 8 out of 10 of the discovered sub-lineages not only clustered genetically but also geographically. Besides showing a remarkable local restriction to certain regions in Benin and Nigeria, the sub-lineages differed dramatically in their capacity to transmit within the human host population. While identifying Benin as one of the countries with the highest overall prevalence of M. africanum, this study also contains the first detailed description of the transmission dynamics and phylogenetic composition of the MAF1 lineage.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.