1. Interstitial Nature of Mn2+ Doping in 2D Perovskites
- Author
-
Andrew J. Torma, Wenbin Li, Hao Zhang, Qing Tu, Vladislav V. Klepov, Michael C. Brennan, Christopher L. McCleese, Matthew D. Krzyaniak, Michael R. Wasielewski, Claudine Katan, Jacky Even, Martin V. Holt, Tod A. Grusenmeyer, Jie Jiang, Ruth Pachter, Mercouri G. Kanatzidis, Jean-Christophe Blancon, Aditya D. Mohite, Rice University [Houston], Texas A&M University [College Station], Northwestern University [Evanston], Air Force Research Laboratory (AFRL), United States Air Force (USAF), Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut des Fonctions Optiques pour les Technologies de l'informatiON (Institut FOTON), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Argonne National Laboratory [Lemont] (ANL), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Nationale Supérieure des Sciences Appliquées et de Technologie (ENSSAT)-Centre National de la Recherche Scientifique (CNRS), FA8650-16-D-5402-0001, Air Force Research Laboratory, Army Research Office, DE-FG02-99ER14999, Basic Energy Sciences, Texas A and M Engineering Experiment Station, Texas A and M University, Institut Universitaire de France, 20-587, National Science Foundation, and Triads for Transformation, Texas A and M University
- Subjects
[PHYS]Physics [physics] ,crystal structure ,strain mapping ,General Engineering ,General Physics and Astronomy ,doping ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,nano X-ray diffraction ,01 natural sciences ,transition metals ,0104 chemical sciences ,Condensed Matter::Materials Science ,halide perovskites ,[CHIM]Chemical Sciences ,Condensed Matter::Strongly Correlated Electrons ,General Materials Science ,0210 nano-technology ,density functional theory ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Halide perovskites doped with magnetic impurities (such as the transition metals Mn2+, Co2+, Ni2+) are being explored for a wide range of applications beyond photovoltaics, such as spintronic devices, stable light-emitting diodes, single-photon emitters, and magneto-optical devices. However, despite several recent studies, there is no consensus on whether the doped magnetic ions will predominantly replace the octahedral B-site metal via substitution or reside at interstitial defect sites. Here, by performing correlated nanoscale X-ray microscopy, spatially and temporally resolved photoluminescence measurements, and magnetic force microscopy on the inorganic 2D perovskite Cs2PbI2Cl2, we show that doping Mn2+ into the structure results in a lattice expansion. The observed lattice expansion contrasts with the predicted contraction expected to arise from the B-site metal substitution, thus implying that Mn2+ does not replace the Pb2+ sites. Photoluminescence and electron paramagnetic resonance measurements confirm the presence of Mn2+ in the lattice, while correlated nano-XRD and X-ray fluorescence track the local strain and chemical composition. Density functional theory calculations predict that Mn2+ atoms reside at the interstitial sites between two octahedra in the triangle formed by one Cl– and two I– atoms, which results in a locally expanded structure. These measurements show the fate of the transition metal dopants, the local structure, and optical emission when they are doped at dilute concentrations into a wide band gap semiconductor.
- Published
- 2021
- Full Text
- View/download PDF