1. Construction of a low Mach finite volume scheme for the isentropic Euler system with porosity
- Author
-
Jonathan Jung, Stéphane Dellacherie, Pascal Omnes, Hydro-Québec - TransÉnergie et Équipement, DCMÉ, Prévisions de contrôle du réseau, Hydro-Québec TransÉnergie, Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Computational AGility for internal flows sImulations and compaRisons with Experiments (CAGIRE), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Pau et des Pays de l'Adour (UPPA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, and PLAFRIM
- Subjects
Numerical Analysis ,Finite volume method ,Applied Mathematics ,Mathematical analysis ,Godunov's scheme ,010103 numerical & computational mathematics ,Euler system ,Numerical diffusion ,Space (mathematics) ,01 natural sciences ,law.invention ,Euler equations ,010101 applied mathematics ,Computational Mathematics ,symbols.namesake ,Mach number ,law ,Modeling and Simulation ,symbols ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Cartesian coordinate system ,0101 mathematics ,Analysis ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; Classical finite volume schemes for the Euler system are not accurate at low Mach number and some fixes have to be used and were developed in a vast literature over the last two decades. The question we are interested in in this article is: What about if the porosity is no longer uniform? We first show that this problem may be understood on the linear wave equation taking into account porosity. We explain the influence of the cell geometry on the accuracy property at low Mach number. In the triangular case, the stationary space of the Godunov scheme approaches well enough the continuous space of constant pressure and divergence-free velocity, while this is not the case in the Cartesian case. On Cartesian meshes, a fix is proposed and accuracy at low Mach number is proved to be recovered. Based on the linear study, a numerical scheme and a low Mach fix for the non-linear system, with a non-conservative source term due to the porosity variations, is proposed and tested.
- Published
- 2021
- Full Text
- View/download PDF