1. Distributed KNN-graph approximation via hashing
- Author
-
ZENITH: Scientific Data Management (ZENITH) ; INRIA - Département Informatique (INFO/LIRMM) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM) - CNRS - Université de Montpellier (UM) - CNRS - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM) - CNRS - Université de Montpellier (UM) - CNRS, INRIA Saclay - Ile de France (INRIA Saclay - Ile de France) ; INRIA, European Project : 288720, ICT, FP7-ICT-2011-7, GLOCAL - ENLARGED EU(2011), Trad, Riadh, Joly, Alexis, Nozha, Boujemaa, ZENITH: Scientific Data Management (ZENITH) ; INRIA - Département Informatique (INFO/LIRMM) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM) - CNRS - Université de Montpellier (UM) - CNRS - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM) - CNRS - Université de Montpellier (UM) - CNRS, INRIA Saclay - Ile de France (INRIA Saclay - Ile de France) ; INRIA, European Project : 288720, ICT, FP7-ICT-2011-7, GLOCAL - ENLARGED EU(2011), Trad, Riadh, Joly, Alexis, and Nozha, Boujemaa
- Abstract
International audience, Efficiently constructing the K-Nearest Neighbor Graph (K-NNG) of large and high dimensional datasets is crucial for many applications with feature-rich objects, such as images or other multimedia content. In this paper we investigate the use of high dimensional hashing methods for efficiently approximating the K-NNG, notably in distributed environments. We first discuss the importance of balancing issues on the performance of such approaches and show why the baseline approach using Locality Sensitive Hashing does not perform well. Our new KNN-join method is based on RMMH, a recently introduced hash function family based on randomly trained classifiers. We show that the resulting hash tables are much more balanced and that the number of resulting collisions can be greatly reduced without degrading quality. We further improve the load balancing of our distributed approach by designing a parallelized local join algorithm, implemented within the MapReduce framework.