Back to Search Start Over

Overview of GeoLifeCLEF 2022: Predicting species presence from multi-modal remote sensing, bioclimatic and pedologic data

Authors :
Lorieul, Titouan
Cole, Elijah
Deneu, Benjamin
Servajean, Maximilien
Bonnet, Pierre
Joly, Alexis
Scientific Data Management (ZENITH)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
California Institute of Technology (CALTECH)
ADVanced Analytics for data SciencE (ADVANSE)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Université Paul-Valéry - Montpellier 3 (UPVM)
Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM)
Département Systèmes Biologiques (Cirad-BIOS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Source :
CLEF 2022-Conference and Labs of the Evaluation Forum, CLEF 2022-Conference and Labs of the Evaluation Forum, Sep 2022, Bologne, Italy. pp.1940-1956
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Understanding the geographic distribution of species is a key concern in conservation. By pairing species occurrences with environmental features, researchers can model the relationship between an environment and the species which may be found there. To advance research in this area, a large-scale machine learning competition called GeoLifeCLEF 2022 was organized. It relied on a dataset of 1.6 million observations from 17K species of animals and plants. These observations were paired with high-resolution remote sensing imagery, land cover data, and altitude, in addition to traditional lowresolution climate and soil variables. The main goal of the challenge was to better understand how to leverage remote sensing data to predict the presence of species at a given location. This paper presents an overview of the competition, synthesizes the approaches used by the participating groups, and analyzes the main results. In particular, we highlight the ability of remote sensing imagery and convolutional neural networks to improve predictive performance, complementary to traditional approaches.

Details

Language :
English
Database :
OpenAIRE
Journal :
CLEF 2022-Conference and Labs of the Evaluation Forum, CLEF 2022-Conference and Labs of the Evaluation Forum, Sep 2022, Bologne, Italy. pp.1940-1956
Accession number :
edsair.dedup.wf.001..34017a0e872b2ed8f288c96c3dfc9cb8