Back to Search Start Over

Very High Resolution Species Distribution Modeling Based on Remote Sensing Imagery: How to Capture Fine-Grained and Large-Scale Vegetation Ecology With Convolutional Neural Networks?

Authors :
Benjamin Deneu
Alexis Joly
Pierre Bonnet
Maximilien Servajean
François Munoz
Scientific Data Management (ZENITH)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Montpellier (UM)
Département Systèmes Biologiques (Cirad-BIOS)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
Université Paul-Valéry - Montpellier 3 (UPVM)
ADVanced Analytics for data SciencE (ADVANSE)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy )
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
ANR-16-CONV-0004,DIGITAG,Institut Convergences en Agriculture Numérique(2016)
Source :
Frontiers in Plant Science, Frontiers in Plant Science, 2022, 13, ⟨10.3389/fpls.2022.839279⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Species Distribution Models (SDMs) are fundamental tools in ecology for predicting the geographic distribution of species based on environmental data. They are also very useful from an application point of view, whether for the implementation of conservation plans for threatened species or for monitoring invasive species. The generalizability and spatial accuracy of an SDM depend very strongly on the type of model used and the environmental data used as explanatory variables. In this article, we study a country-wide species distribution model based on very high resolution (VHR) (1 m) remote sensing images processed by a convolutional neural network. We demonstrate that this model can capture landscape and habitat information at very fine spatial scales while providing overall better predictive performance than conventional models. Moreover, to demonstrate the ecological significance of the model, we propose an original analysis based on the t-distributed Stochastic Neighbor Embedding (t-SNE) dimension reduction technique. It allows visualizing the relation between input data and species traits or environment learned by the model as well as conducting some statistical tests verifying them. We also analyze the spatial mapping of the t-SNE dimensions at both national and local levels, showing the model benefit of automatically learning environmental variation at multiple scales.

Details

Language :
English
ISSN :
1664462X
Database :
OpenAIRE
Journal :
Frontiers in Plant Science, Frontiers in Plant Science, 2022, 13, ⟨10.3389/fpls.2022.839279⟩
Accession number :
edsair.doi.dedup.....38439f8427d110bdc6a19014b43fbf93