Back to Search Start Over

TSPred: A framework for nonstationary time series prediction

Authors :
Eduardo Bezerra
Fabio Porto
Rebecca Salles
Eduardo Ogasawara
Esther Pacitti
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (Rio de Janeiro) ( CEFET/RJ)
Scientific Data Management (ZENITH)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratorio Nacional de Computação Cientifica [Rio de Janeiro] (LNCC / MCT)
Associated team Hpdasc
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Source :
Neurocomputing, Neurocomputing, Elsevier, 2022, 467, pp.197-202. ⟨10.1016/j.neucom.2021.09.067⟩, Neurocomputing, 2022, 467, pp.197-202. ⟨10.1016/j.neucom.2021.09.067⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; The nonstationary time series prediction is challenging since it demands knowledge of both data transformation and prediction methods. This paper presents TSPred, a framework for nonstationary time series prediction. It differs from the mainstream frameworks since it establishes a prediction process that seamlessly integrates nonstationary time series transformations with state-of-the-art statistical and machine learning methods. It is made available as an R-package, which provides functions for defining and conducting time series prediction, including data pre(post)processing, decomposition, modeling, prediction, and accuracy assessment. Besides, TSPred enables user-defined methods, which significantly expands the applicability of the framework.

Details

Language :
English
ISSN :
09252312
Database :
OpenAIRE
Journal :
Neurocomputing, Neurocomputing, Elsevier, 2022, 467, pp.197-202. ⟨10.1016/j.neucom.2021.09.067⟩, Neurocomputing, 2022, 467, pp.197-202. ⟨10.1016/j.neucom.2021.09.067⟩
Accession number :
edsair.doi.dedup.....266e3ba4667c86dfdb768fb6bc53805a
Full Text :
https://doi.org/10.1016/j.neucom.2021.09.067⟩