144 results on '"Guillaume Wantz"'
Search Results
2. Towards robust organic solar cells based on responsible materials printed from water
- Author
-
Wantz, Guillaume Wantz, primary
- Published
- 2023
- Full Text
- View/download PDF
3. Sub-4 nm mapping of donor–acceptor organic semiconductor nanoparticle composition
- Author
-
Ingemar Persson, Hugo Laval, Sylvain Chambon, Gwenael Bonfante, Kazuhiko Hirakawa, Guillaume Wantz, Benjamin Watts, Matthew A. Marcus, Xiaoxue Xu, Lei Ying, Girish Lakhwani, Mats R. Andersson, Julie M. Cairney, and Natalie P. Holmes
- Subjects
General Materials Science - Abstract
The first report of sub-4 nm mapping of donor : acceptor nanoparticle composition in eco-friendly colloidal dispersions for organic electronics.
- Published
- 2023
- Full Text
- View/download PDF
4. Improved stability of organic electrochemical transistor performance with a low swelling mixed conducting polymer: a comparative study with PEDOT:PSS
- Author
-
Natalia Pereira Menezes, Tommaso Nicolini, Micah Barker, André Augusto Mariano, César Augusto Dartora, Guillaume Wantz, Natalie Stingelin, Mamatimin Abbas, Olivier J. Dautel, and Damien Thuau
- Subjects
Materials Chemistry ,General Chemistry - Abstract
OECTs soaked in an electrolyte for up to 40 days produced with a low swelling mixed conductor, poly[3-(6-hydroxy)hexylthiophene] (P3HHT), showed enhanced stability in their electrochemical performance in comparison to PEDOT:PSS-based OECT.
- Published
- 2023
- Full Text
- View/download PDF
5. Azido‐Functionalized Fullerenes, Perylenediimide, Perylene, and Tetraphenylethylene as Crosslinkers for Applications in Materials Science
- Author
-
Carmen Villegas, Aurel Diacon, Thérèse Gorisse, Lionel Derue, Ingrid Freuze, Magali Allain, Hussein Awada, Olivier Dautel, Guillaume Wantz, and Piétrick Hudhomme
- Subjects
Inorganic Chemistry ,Organic Chemistry ,Drug Discovery ,Physical and Theoretical Chemistry ,Biochemistry ,Catalysis - Published
- 2023
- Full Text
- View/download PDF
6. Toward High Efficiency Water Processed Organic Photovoltaics: Controlling the Nanoparticle Morphology with Surface Energies
- Author
-
Hugo Laval, Alexandre Holmes, Matthew A. Marcus, Benjamin Watts, Gwenaël Bonfante, Marc Schmutz, Elise Deniau, Robin Szymanski, Christine Lartigau‐Dagron, Xiaoxue Xu, Julie M. Cairney, Kazuhiko Hirakawa, Fumiyasu Awai, Takaya Kubo, Guillaume Wantz, Antoine Bousquet, Natalie P. Holmes, and Sylvain Chambon
- Subjects
Renewable Energy, Sustainability and the Environment ,General Materials Science - Published
- 2023
- Full Text
- View/download PDF
7. Helical thienothiophene (TT) and benzothieno–benzothiophene (BTBT) derivatives: synthesis, structural characterization and semiconducting properties
- Author
-
Maurizio Mastropasqua Talamo, Flavia Pop, Paul Hume, Mamatimin Abbas, Guillaume Wantz, and Narcis Avarvari
- Subjects
Materials Chemistry ,General Chemistry - Abstract
A double helicenic benzothieno–benzothiophene derivative, showing homochiral layers of MM and PP enantiomers in the single crystal phase, behaves as a p-type semiconductor in thin-film OFET devices fabricated by both spin coating and evaporation.
- Published
- 2022
- Full Text
- View/download PDF
8. Investigating Reliability of NIR QD-based Photodiodes Under Bias and Light Stres
- Author
-
Ismail Hammad, Jean Coignus, David Ney, Celestin Doyen, Sebastien Perrin, Stephane Ricq, Florian Cacho, Guillaume Wantz, Xavier Federspiel, David Roy, and Emmanuel Josse
- Published
- 2022
- Full Text
- View/download PDF
9. Directional Crystallization from the Melt of an Organic p-Type and n-Type Semiconductor Blend
- Author
-
Yves Geerts, Andrew S. Dunn, Jie Liu, Mamatimin Abbas, Roland Resel, Guillaume Wantz, Guangfeng Liu, Peter Nadazdy, Peter Siffalovic, Laboratoire de l'intégration, du matériau au système (IMS), and Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physique de l'état condense [struct. électronique, etc.] ,Materials science ,crystallization ,thermotropic ,doping ,02 engineering and technology ,Physique de l'état condense [struct. propr. thermiques, etc.] ,010402 general chemistry ,01 natural sciences ,law.invention ,p- and n-type molecular semiconductors ,law ,Chimie ,General Materials Science ,Crystallization ,Physique de l'état condense [supraconducteur] ,ComputingMilieux_MISCELLANEOUS ,Extrinsic semiconductor ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Crystallography ,TCNQ acceptor ,Métallurgie et mines ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
Directional crystallization from the melt has been used as a tool to grow parallel crystalline stripes of p- and n-type molecular semiconductors. To start, the phase behavior of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8): tetracyanoquinodimethane (TCNQ) blends (molar ratio from 20:1 to 1:1) has been investigated by variable-temperature X-ray diffraction, differential scanning calorimetry, and polarized optical microscopy. The partial charge transfer between the C8-BTBT-C8 donor and the TCNQ acceptor as a function of temperature has been studied. Blends of 10:1 and 20:1 have been selected for directional crystallization because they show similar thermotropic and phase behavior comparable to that of pure C8-BTBT-C8. Directional crystallization results suggest that moderate cooling rates (6 and 12 °C min-1) leads to a digitated growth mode that gives rise to parallel crystalline stripes of C8-BTBT-C8 and C8-BTBT-C8-TCNQ charge-transfer complexes (C8-BTBT-C8-TCNQ CT), as confirmed by confocal Raman imaging. X-ray diffraction reveals high preferential orientation and good in-plane alignment for both C8-BTBT-C8 and C8-BTBT-C8-TCNQ CT crystallites., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2021
- Full Text
- View/download PDF
10. Dependence of the performance of light-emitting diodes on the molecular weight of the electroluminescent polymer PFO-MEH-PPV
- Author
-
Pierre-Louis M. Brunner, Guillaume Wantz, Minh Trung Dang, James D. Wuest, and Dominic Laliberté
- Subjects
chemistry.chemical_classification ,business.industry ,Organic Chemistry ,02 engineering and technology ,General Chemistry ,Polymer ,Electroluminescence ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Catalysis ,0104 chemical sciences ,law.invention ,chemistry ,law ,Optoelectronics ,0210 nano-technology ,business ,Light-emitting diode - Abstract
Controlled synthesis of the electroluminescent polymer PFO-MEH-PPV (poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene)]) provided samples of varying molecular weight (Mw) in the range 20–360 kDa, as determined by gel-permeation chromatography and light scattering. The samples were used as the active layers in organic light-emitting diodes (OLEDs), and the performance of the devices was examined as a function of Mw. Turn-on voltages fell in the range 1.92–2.78 V, luminances varied from 231 to 5826 cd/m2, and luminous efficacies ranged from 0.06 to 0.90 lm/W. The emitted colour was found to vary from green to yellow as Mw increases. Optimal performance was attained by using PFO-MEH-PPV with Mw = 100 kDa. To help reveal how Mw determines the performance of OLEDs, relative quantum yields of photoluminescence in solutions and films were measured, and films were characterized by atomic force microscopy and transmission electron microscopy.
- Published
- 2020
- Full Text
- View/download PDF
11. Temperature-Dependent Structural Phase Transition in Rubrene Single Crystals: The Missing Piece from the Charge Mobility Puzzle?
- Author
-
Arie van der Lee, Maurizio Polentarutti, Gilles H. Roche, Olivier J. Dautel, Guillaume Wantz, Frédéric Castet, Luca Muccioli, van der Lee, Arie, Polentarutti, Maurizio, Roche, Gilles H., Dautel, Olivier J., Wantz, Guillaume, Castet, Frédéric, Muccioli, Luca, Institut Européen des membranes (IEM), and Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)
- Subjects
[CHIM.ORGA]Chemical Sciences/Organic chemistry ,[CHIM.CRIS]Chemical Sciences/Cristallography ,organic semiconductors, charge mobility, DFT ,General Materials Science ,02 engineering and technology ,Physical and Theoretical Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS ,0104 chemical sciences - Abstract
Accurate structural models for rubrene, the benchmark organic semiconductor, derived from synchrotron X-ray data in the temperature range of 100–300 K, show that its cofacially stacked tetracene backbone units remain blocked with respect to each other upon cooling to 200 K and start to slip below that temperature. The release of the blocked slippage occurs at approximately the same temperature as the hole mobility crossover. The blocking between 200 and 300 K is caused by a negative correlation between the relatively small thermal expansion along the crystallographic b-axis and the relatively large widening of the angle between herringbone-stacked tetracene units. DFT calculations reveal that this blocked slippage is accompanied by a discontinuity in the variation with temperature of the electronic couplings associated with hole transport between cofacially stacked tetracene backbones.
- Published
- 2022
- Full Text
- View/download PDF
12. Homojunction Doping for Efficient Hole Extraction in Polymer Solar Cells
- Author
-
Francis Feaugas, Tommaso Nicolini, Gilles H. Roche, Lionel Hirsch, Olivier J. Dautel, and Guillaume Wantz
- Subjects
Energy Engineering and Power Technology ,Electrical and Electronic Engineering ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials - Published
- 2022
- Full Text
- View/download PDF
13. Directional crystallization of C8-BTBT-C8 thin films in a temperature gradient
- Author
-
Mamatimin Abbas, Roland Resel, Guillaume Schweicher, Guillaume Wantz, Guangfeng Liu, Yves Geerts, Pierre Fastré, Université libre de Bruxelles (ULB), Graz University of Technology [Graz] (TU Graz), Laboratoire de l'intégration, du matériau au système (IMS), and Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physique ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,law.invention ,Temperature gradient ,Optical microscope ,Liquid crystal ,law ,Phase (matter) ,Materials Chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Chimie ,General Materials Science ,Crystallite ,Dewetting ,Crystallization ,Thin film ,Composite material ,0210 nano-technology - Abstract
A directional crystallization of the compound 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8) based on a temperature gradient approach has been used as a post-deposition process to control the crystalline morphology of thin films. C8-BTBT-C8 films of arbitrary thicknesses have been fabricated by spin-coating and subjected to the directional crystallization process. Dewetting is prevented by the liquid crystal phase of C8-BTBT-C8, allowing the formation of flat and rather uniform thin films with large crystalline domains. Spin-coating concentration, gradient magnitude, and cooling rate have been varied to explore a large set of crystallization conditions and to correlate them with the thin film morphology. The latter has been characterized by a combined use of optical profilometry, polarized optical microscopy, X-ray reflectometry, and X-ray diffraction measurements. The characterization results confirm that the roughness and crystalline order of the thin films are improved after the temperature gradient treatments: (1) high cooling rate treatments (≥9 °C min−1) significantly reduce the roughness of high thickness films, leading to good continuity and uniformity of the films; (2) dendritic growth dominates not only the films with low thickness but also films with high thickness treated at low cooling rates (, info:eu-repo/semantics/published
- Published
- 2021
- Full Text
- View/download PDF
14. Balanced charge transport optimizes industry-relevant ternary polymer solar cells
- Author
-
Harald Ade, Guillaume Wantz, Sylvain Chambon, Stéphanie Courtel, Samuel J. Stuard, Uyxing Vongsaysy, Reece Henry, Robin Szymanski, Mélanie Bertrand, Luc Vellutini, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), ARMOR SAS, North Carolina A&T State University, University of North Carolina System (UNC), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratory for Integrated Micro Mechatronics Systems (LIMMS), and The University of Tokyo (UTokyo)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Energy Engineering and Power Technology ,Charge (physics) ,Polymer solar cells ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Atomic and Molecular Physics, and Optics ,Polymer solar cell ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,non-chlorinated solvent ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Chemical physics ,low-cost semiconducting polymer ,Electrical and Electronic Engineering ,0210 nano-technology ,Ternary operation - Abstract
International audience; Bulk heterojunction polymer solar cells based on a novel combination of materials are fabricated using industry-compliant conditions for large area manufacturing. The relatively low-cost polymer PTQ10 is paired with the non-fullerene acceptor 4TIC-4F. Devices are processed using a non-halogenated solvent to comply with industrial usage in absence of any thermal treatment to minimize the energy footprint of the fabrication. No solvent additive is used. Adding the well-known and low-cost fullerene derivative PC61BM acceptor to this binary blend to form a ternary blend, the power conversion efficiency (PCE) was improved from 8.4% to 9.9% due to increased fill factor (FF) and open circuit voltage (VOC), while simultaneously improving the stability. The introduction of PC61BM is able to balance the hole-electron mobility in the ternary blends, which is favourable for high FF. This charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS), Atomic Force Microscopy (AFM) and surface energy analysis. In addition, the industrial figure of merit (i-FOM) of this ternary blend was found to increase drastically upon addition of PC61BM due to an increased performancestability-cost balance.
- Published
- 2020
- Full Text
- View/download PDF
15. A Low-Swelling Polymeric Mixed Conductor Operating in Aqueous Electrolytes
- Author
-
Guillaume Wantz, Alberto D. Scaccabarozzi, Georges Hadziioannou, Olivier Dautel, Achilleas Savva, Tommaso Nicolini, Rana Nakar, Natalie Stingelin, Damien Thuau, Jokubas Surgailis, Lee J. Richter, Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies, Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), King Abdullah University of Science and Technology (KAUST), University of Cambridge [UK] (CAM), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), National Institute of Standards and Technology [Gaithersburg] (NIST), and Georgia Institute of Technology [Atlanta]
- Subjects
Materials science ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Ion ,medicine ,[CHIM]Chemical Sciences ,General Materials Science ,Electrical conductor ,[PHYS]Physics [physics] ,chemistry.chemical_classification ,Bioelectronics ,hydrophilic conjugated polymers ,Mechanical Engineering ,Doping ,Polymer ,021001 nanoscience & nanotechnology ,organic electrochemical transistors ,poly(3-(6-hydroxy)hexyl thiophene) ,0104 chemical sciences ,Mixed conductor ,Neuromorphic engineering ,chemistry ,mixed conduction ,Mechanics of Materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Swelling ,medicine.symptom ,0210 nano-technology - Abstract
Organic mixed conductors find use in batteries, bioelectronics technologies, neuromorphic computing, and sensing. While great progress has been achieved, polymer-based mixed conductors frequently experience significant volumetric changes during ion uptake/rejection, i.e., during doping/de-doping and charging/discharging. Although ion dynamics may be enhanced in expanded networks, these volumetric changes can have undesirable consequences, e.g., negatively affecting hole/electron conduction and severely shortening device lifetime. Here, the authors present a new material poly[3-(6-hydroxy)hexylthiophene] (P3HHT) that is able to transport ions and electrons/holes, as tested in electrochemical absorption spectroscopy and organic electrochemical transistors, and that exhibits low swelling, attributed to the hydroxylated alkyl side-chain functionalization. P3HHT displays a thickness change upon passive swelling of only +2.5%, compared to +90% observed for the ubiquitous poly(3,4-ethylenedioxythiophene):polystyrene sulfonate, and +10 to +15% for polymers such as poly(2-(3,3'-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-[2,2'-bithiophen]-5-yl)thieno[3,2-b]thiophene) (p[g2T-TT]). Applying a bias pulse during swelling, this discrepancy becomes even more pronounced, with the thickness of P3HHT films changing by10% while that of p(g2T-TT) structures increases by +75 to +80%. Importantly, the initial P3HHT film thickness is essentially restored after de-doping while p(g2T-TT) remains substantially swollen. The authors, thus, expand the materials-design toolbox for the creation of low-swelling soft mixed conductors with tailored properties and applications in bioelectronics and beyond.
- Published
- 2020
- Full Text
- View/download PDF
16. Exploring the Critical Thickness of Organic Semiconductor Layer for Enhanced Piezoresistive Sensitivity in Field-Effect Transistor Sensors
- Author
-
Rishat Dilmurat, Katherine Begley, Guillaume Wantz, Cédric Ayela, Abduleziz Ablat, Mamatimin Abbas, Damien Thuau, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, and Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Letter ,02 engineering and technology ,010402 general chemistry ,sensors ,lcsh:Technology ,01 natural sciences ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,General Materials Science ,Thin film ,lcsh:Microscopy ,lcsh:QC120-168.85 ,Organic field-effect transistor ,lcsh:QH201-278.5 ,lcsh:T ,business.industry ,organic semiconductor ,Transistor ,021001 nanoscience & nanotechnology ,organic field-effect transistor ,Piezoresistive effect ,0104 chemical sciences ,Organic semiconductor ,lcsh:TA1-2040 ,Percolation ,Optoelectronics ,lcsh:Descriptive and experimental mechanics ,Charge carrier ,Field-effect transistor ,piezoresistivity ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,lcsh:Engineering (General). Civil engineering (General) ,0210 nano-technology ,business ,lcsh:TK1-9971 - Abstract
International audience; Organic semiconductors (OSCs) are promising transducer materials when applied in organic field-effect transistors (OFETs) taking advantage of their electrical properties which highly depend on the morphology of the semiconducting film. In this work, the effects of OSC thickness (ranging from 5 to 15 nm) on the piezoresistive sensitivity of a high-performance p-type organic semiconductor, namely dinaphtho [2,3-b:2,3-f] thieno [3,2-b] thiophene (DNTT), were investigated. Critical thickness of 6 nm thin film DNTT, thickness corresponding to the appearance of charge carrier percolation paths in the material, was demonstrated to be highly sensitive to mechanical strain. Gauge factors (GFs) of 42 ± 5 and −31 ± 6 were measured from the variation of output currents of 6 nm thick DNTT-based OFETs engineered on top of polymer cantilevers in response to compressive and tensile strain, respectively. The relationship between the morphologies of the different thin films and their corresponding piezoresistive sensitivities was discussed.
- Published
- 2020
- Full Text
- View/download PDF
17. 'Heavy-atom effects' in the parent [1]benzochalcogenopheno[3,2-b][1]benzochalcogenophene system
- Author
-
Kohsuke Kawabata, Kazuo Takimiya, Mamatimin Abbas, Chengyuan Wang, Guillaume Wantz, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, and Tohoku University [Sendai]
- Subjects
Materials science ,010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Intermolecular force ,chemistry.chemical_element ,General Chemistry ,Crystal structure ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,Organic semiconductor ,Chalcogen ,Crystallography ,Atomic radius ,chemistry ,Atomic orbital ,Atom ,Materials Chemistry ,Tellurium - Abstract
International audience; Benzochalcogenopheno[3,2-b][1]benzochalcogenophenes (BXBXs) have been the key π-conjugated core structures in the development of superior organic semiconductors for organic field-effect transistors (OFETs). The semiconducting properties of parent BXBXs, however, have not been well examined. In this work, we focus on the parent system and investigate the effect of different chalcogen atoms, i.e., sulphur, selenium or tellurium atoms, in the BXBX core on molecular electronic properties, crystal structures, intermolecular interactions, solid-state electronic structures, and carrier transport properties. Replacing the sulphur atoms in [1]benzothieno[3,2-b][1]benzothiophene (BTBT) with selenium atoms marginally changes the molecular properties and the intermolecular interactions, thus resulting in similar herringbone packing structures in the solid state. The carrier mobilities of single-crystal (SC)-OFETs are higher for [1]benzoselenopheno[3,2-b][1]benzoselenophene (BSBS) than those for BTBT, which can be understood by the increase in the intermolecular electronic coupling in BSBS, originating from the larger atomic radius and more diffused electron cloud of selenium atoms than sulphur atoms. On the other hand, the packing structure of [1]benzotelluropheno[3,2-b][1]benzotellurophene (BTeBTe) is determined to be a dimeric herringbone structure. The crystal structure of BTeBTe being strikingly different from those of BTBT and BSBS can be explained by a drastic change in the intermolecular interaction in the solid state. Furthermore, the BTeBTe-based SC-OFETs do not show transistor response. To elucidate these unexpected results, various experimental and theoretical approaches, e.g., evaluation of ionization potentials and band calculations, are examined. Through these approaches, a comprehensive view of the parent BXBX system is given, and also both the pros and cons of incorporation of heavy chalcogen atoms, positive and negative “heavy-atom effects”, in developing organic semiconductors are discussed
- Published
- 2020
- Full Text
- View/download PDF
18. Correction: 'Heavy-atom effects' in the parent [1]benzochalcogenopheno[3,2-b][1]benzochalcogenophene system
- Author
-
Chengyuan Wang, Mamatimin Abbas, Guillaume Wantz, Kohsuke Kawabata, and Kazuo Takimiya
- Subjects
Materials Chemistry ,General Chemistry - Abstract
Correction for ‘“Heavy-atom effects” in the parent [1]benzochalcogenopheno[3,2-b][1]benzochalcogenophene system’ by Chengyuan Wang et al., J. Mater. Chem. C, 2020, 8, 15119–15127, DOI: https://doi.org/10.1039/D0TC01408G.
- Published
- 2022
- Full Text
- View/download PDF
19. New insights into polymer solar cells stability: The crucial role of PCBM oxidation
- Author
-
Brigitte Pépin-Donat, Piétrick Hudhomme, Anthony Perthué, Hugo Santos Silva, Guillaume Wantz, Christian Lombard, Agnès Rivaton, Didier Bégué, Thérèse Gorisse, Institut de Chimie de Clermont-Ferrand (ICCF), SIGMA Clermont (SIGMA Clermont)-Institut de Chimie du CNRS (INC)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), MOLTECH-Anjou, Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-13-PRGE-0006,HELIOS,Modules solaires photovoltaïques organiques de grande surface à hauts rendements stabilisés(2013), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,oxidation ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Polymer solar cell ,photovoltaic ,Electron transfer ,[CHIM.ANAL]Chemical Sciences/Analytical chemistry ,Oxidizing agent ,Molecule ,General Materials Science ,photochemical ,Nanoscopic scale ,chemistry.chemical_classification ,Mechanical Engineering ,Photovoltaic system ,Heterojunction ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Mechanics of Materials ,0210 nano-technology - Abstract
International audience; Fullerene derivatives have been ubiquitous as an electron-accepting material in organic photovoltaic solar cells (OSCs). We consider whether and why traces of PCBM oxidation products should be seen as electronic defects impairing the performance of OSCs. Thin PCBM deposits were first illuminated under ambient air for a few minutes, thus revealing the extraordinary easiness of oxidizing PCBM. The charge transfer in polymer:PCBMox bulk heterojunctions was then studied. As a result of a few minutes of PCBM photooxidation, the electron transfer from the polymer to two types of PCBMox species was shown to occur at the expense of the transfer to pristine PCBM. Such modifications to the molecular structure of PCBM and to the charge transfer at the nanoscale were finally correlated with a dramatic loss in the device's photovoltaic performance at the macroscale. This study clearly indicates the need to integrate photooxidation-resistant electron-accepting materials into OSCs to extend their lifetime
- Published
- 2018
- Full Text
- View/download PDF
20. Correlating Crystal Thickness, Surface Morphology, and Charge Transport in Pristine and Doped Rubrene Single Crystals
- Author
-
Natalie Stingelin, D. Leonardo Gonzalez Arellano, Guillaume Wantz, Cédric Ayela, Edmund K. Burnett, Stefan Bachevillier, Stefan C. B. Mannsfeld, Jae Joon Kim, Özlem Usluer, Alejandro L. Briseno, Benjamin P. Cherniawski, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Stanford Synchrotron Radiation Lightsource (SSRL SLAC), SLAC National Accelerator Laboratory (SLAC), and Stanford University-Stanford University
- Subjects
Surface (mathematics) ,Materials science ,Morphology (linguistics) ,Doping ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Subthreshold slope ,0104 chemical sciences ,Crystal ,[SPI]Engineering Sciences [physics] ,chemistry.chemical_compound ,Surface conductivity ,chemistry ,Chemical physics ,Surface roughness ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,Rubrene ,ComputingMilieux_MISCELLANEOUS - Abstract
The relationship between charge transport and surface morphology is investigated by utilizing rubrene single crystals of varying thicknesses. In the case of pristine crystals, the surface conductivities decrease exponentially as the crystal thickness increases until ∼4 μm, beyond which the surface conductivity saturates. Investigation of the surface morphology using optical and atomic force microscopy reveals that thicker crystals have a higher number of molecular steps, increasing the overall surface roughness compared with thin crystals. The density of molecular steps as a surface trap is further quantified with the subthreshold slope of rubrene air-gap transistors. This thickness-dependent surface conductivity is rationalized by a shift from in-plane to out-of-plane transport governed by surface roughness. The surface transport is disrupted by roughening of the crystal surface and becomes limited by the slower vertical crystallographic axis on molecular step edges. Separately, we investigate surface-doping of rubrene crystals by using fluoroalkyltrichrolosilane and observe a different mechanism for charge transport which is independent of surface roughness. This work demonstrates that the correlation between crystal thickness, surface morphology, and charge transport must be taken into account when measuring organic single crystals. Considering the fact that these molecular steps are universally observed on organic/inorganic and single/polycrystals, we believe that our findings can be widely applied to improve charge transport understanding.
- Published
- 2018
- Full Text
- View/download PDF
21. Experimental and theoretical evidence of a supercritical-like transition in an organic semiconductor presenting colossal uniaxial negative thermal expansion
- Author
-
Joël J. E. Moreau, Jean-Sébastien Filhol, Gille H. Roche, Guillaume Wantz, Olivier Dautel, Arie van der Lee, Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Materials science ,Anharmonicity ,02 engineering and technology ,General Chemistry ,Crystal structure ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Thermal expansion ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Organic semiconductor ,chemistry.chemical_compound ,chemistry ,Negative thermal expansion ,Chemical physics ,Phase (matter) ,Thiophene ,0210 nano-technology ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS - Abstract
Thermal expansion coefficients of most materials are usually small, typically up to 50 parts per million per kelvin, and positive, i.e. materials expand when heated. Some materials show an atypical shrinking behavior in one or more crystallographic directions when heated. Here we show that a high mobility thiophene-based organic semiconductor, BHH-BTBT, has an exceptionally large negative expansion between 95 and 295 K (-216 < α2 = αb < -333 MK-1), being compensated by an even larger positive expansion in the perpendicular direction (287 < α1 < 634 MK-1). It is shown that these anomalous expansivities are completely absent in C8-BTBT, a much studied organic semiconductor with a closely related molecular formula and 3D crystallographic structure. Complete theoretical characterization of BHH-BTBT using ab initio molecular dynamics shows that below ∼200 K two different α and β domains exist of which one is dominant but which dynamically exchange around and above 210 K. A supercritical-like transition from an α dominated phase to a β dominated phase is observed using DSC measurements, UV-VIS spectroscopy, and X-ray diffraction. The origin of the extreme negative and positive thermal expansion is related to steric hindrance between adjacent tilted thiophene units and strongly enhanced by attractive S···S and S···C interactions within the highly anharmonic mixed-domain phase. This material could trigger the tailoring of optoelectronic devices highly sensitive to strain and temperature.
- Published
- 2018
- Full Text
- View/download PDF
22. Unusual electromechanical response in rubrene single crystals
- Author
-
Luca Muccioli, Guillaume Wantz, Yoann Olivier, Alejandro L. Briseno, Micaela Matta, Sai Manoj Gali, Damien Thuau, Isabelle Dufour, Cédric Ayela, Marco José Pereira, DIPARTIMENTO DI CHIMICA 'GIACOMO CIAMICIAN', DIPARTIMENTO DI CHIMICA INDUSTRIALE 'TOSO MONTANARI', Da definire, AREA MIN. 03 - Scienze chimiche, Matta, Micaela, Pereira, Marco José, Gali, Sai Manoj, Thuau, Damien, Olivier, Yoann, Briseno, Alejandro, Dufour, Isabelle, Ayela, Cedric, Wantz, Guillaume, Muccioli, Luca, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Lab Chem Novel Mat, Université de Mons (UMons), Laboratoire de Chimie des Polymères Organiques (LCPO), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
- Subjects
Work (thermodynamics) ,Materials science ,Stacking ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Crystal ,stress ,chemistry.chemical_compound ,strain ,General Materials Science ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,Rubrene ,ComputingMilieux_MISCELLANEOUS ,Process Chemistry and Technology ,Intermolecular force ,stress, strain, transfer integral ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,transfer integral ,Organic semiconductor ,chemistry ,Mechanics of Materials ,Chemical physics ,Modulation ,Deformation (engineering) ,0210 nano-technology - Abstract
none 10 si Organic semiconductors are intensively studied as promising materials for the realisation of low-cost flexible electronic devices. The flexibility requirement implies either performance stability towards deformation, or conversely, detectable response to the deformation itself. The knowledge of the electromechanical response of organic semiconductors to external stresses is therefore not only interesting from a fundamental point of view, but also necessary for the development of real world applications. To this end, in this work we predict and measure the variation of charge carrier mobility in rubrene single crystals as a function of mechanical strain, applied selectively along the crystal axes. We find that strain induces simultaneous mobility changes along all three axes, and that in some cases the response is higher along directions orthogonal to the mechanical deformation. These variations cannot be explained by the modulation of intermolecular distances, but only by a more complex molecular reorganisation, which is particularly enhanced, in terms of response, by π-stacking and herringbone stacking. This microscopic knowledge of the relation between structural and mobility variations is essential for the interpretation of electromechanical measurements for crystalline organic semiconductors, and for the rational design of electronic devices. mixed Matta, Micaela; Pereira, Marco José; Gali, Sai Manoj; Thuau, Damien; Olivier, Yoann; Briseno, Alejandro; Dufour, Isabelle; Ayela, Cedric; Wantz, Guillaume; Muccioli, Luca Matta, Micaela; Pereira, Marco José; Gali, Sai Manoj; Thuau, Damien; Olivier, Yoann; Briseno, Alejandro; Dufour, Isabelle; Ayela, Cedric; Wantz, Guillaume; Muccioli, Luca
- Published
- 2018
- Full Text
- View/download PDF
23. Structural Odd–Even Effect Impacting the Dimensionality of Transport in BTBT‐C n OH Organic Field Effect Transistors
- Author
-
Gudrun Bruckner, Dan Dumitrescu, Olivier Dautel, Gilles H. Roche, Arie van der Lee, Joël J. E. Moreau, Guillaume Wantz, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Carinthian Tech Research (CTR), Institut Européen des membranes (IEM), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM), Laboratoire de Chimie Organometallique, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Laboratoire de l'intégration, du matériau au système (IMS), and Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Odd-even effect ,02 engineering and technology ,Supramolecular architectures ,010402 general chemistry ,01 natural sciences ,Molecule ,Lamellar structure ,BTBT ,Alkyl ,chemistry.chemical_classification ,Organic field-effect transistor ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,OFETs ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Organic semiconductor ,chemistry ,Chemical physics ,Melting point ,Field-effect transistor ,Herringbone pattern ,0210 nano-technology - Abstract
International audience; The synthesis and characterization of a series of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) molecules disubstituted by hydroxy aliphatic chains in positions 2 and 7 (BTBT-CnOH), where the intralayer molecular stacking alternates between a classical and an inverted herringbone mode as a function of whether the alkyl sides chains have an even or an odd number of carbon atoms are reported. This odd–even effect does not only affect the interlayer distance of the lamellar structures and the melting points, but also the electronic properties. The BTBT-CnOH odd series develops a classical herringbone pattern with edge-to-edge S⋯S interaction chains linked together by face-to-edge S⋯S interaction chains with 2D mobility. However, the even series has only edge-to-edge interactions in an inverted herringbone organization and thus only a 1D conducting character. These two types of herringbone patterns have different field effect transistor characteristics and mobilities, those of the odd members being systematically higher than their even neighbors. This is the first example of an odd–even effect impacting the electronic properties of an organic semiconductor.
- Published
- 2021
- Full Text
- View/download PDF
24. Halide Perovskite Precursors Dope PEDOT:PSS (Adv. Electron. Mater. 9/2021)
- Author
-
Jean-Paul Barnes, Guillaume Wantz, Zuzanna Molenda, Lionel Hirsch, Claire Guyot, Simon Sandrez, Olivier Renault, and Tony Maindron
- Subjects
Materials science ,PEDOT:PSS ,Chemical engineering ,Halide ,Electron ,Electronic, Optical and Magnetic Materials ,Perovskite (structure) - Published
- 2021
- Full Text
- View/download PDF
25. Bright and efficient inverted organic light-emitting diodes with improved solution-processed electron-transport interlayers
- Author
-
Guillaume Wantz, Tony Maindron, Yolande Murat, Lionel Hirsch, Jean-Paul Barnes, Eric Langer, Jean-Yves Laurent, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Analytical chemistry ,02 engineering and technology ,Conjugated system ,010402 general chemistry ,01 natural sciences ,law.invention ,Biomaterials ,law ,Materials Chemistry ,OLED ,Work function ,Electrical and Electronic Engineering ,ComputingMilieux_MISCELLANEOUS ,Diode ,chemistry.chemical_classification ,Bilayer ,General Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Cathode ,[SPI.TRON]Engineering Sciences [physics]/Electronics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,chemistry ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,Layer (electronics) - Abstract
Highly efficient inverted organic light-emitting diodes (iOLEDs) are reported by including in the structure a surface modifier, polyethylenimine-ethoxylated (PEIE), to decrease the cathode work function and a hole blocking layer, 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) to increase the efficiency of the device. The two compounds have been processed in a single step, by using a mixture PEIE:TPBi spun from the same solution. It is demonstrated by time-of-flight secondary-ion mass spectrometry (TOF-SIMS) that a bilayer is formed and same performances as the separately processed materials are obtained. This technic enables to reach high luminances (40 000 cd m−2) and high current efficiencies (13 cd/A) using the conjugated Super Yellow (SY) polymer as the emissive layer while reducing the number of processing steps.
- Published
- 2017
- Full Text
- View/download PDF
26. Synthesis of Bioinspired Curcuminoid Small Molecules for Solution-Processed Organic Solar Cells with High Open-Circuit Voltage
- Author
-
Guillaume Wantz, Elena Zaborova, Sylvain Chambon, Frédéric Fages, Boris Le Guennic, Mamatimin Abbas, Florence Archet, Gabriel Canard, Anthony D'Aléo, Miguel Ponce-Vargas, Dandan Yao, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), French National Research Agency (ANR) ('Chalcones' Project) ANR-14-CE05-0035-01 ANR as part of the 'Investissements d'avenir' program ANR-10-EQPX-28-01/Equipex ELORPrintTec, ANR-14-CE05-0035,Chalcones,Colorants bio-inspirés pour les procédés d'impression de cellules solaires organiques(2014), ANR-10-EQPX-0028,ELORPrinttec,'Plate-forme de l'Université de Bordeaux pour l'organique électronique imprimable : de la molécule aux dispositifs et systèmes intégrés - valorisation et commercialisation'(2010), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Organic solar cell ,Energy Engineering and Power Technology ,charge separation ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,Triphenylamine ,7. Clean energy ,01 natural sciences ,chemistry.chemical_compound ,Photovoltaics ,Materials Chemistry ,Thermal stability ,complexes ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Renewable Energy, Sustainability and the Environment ,business.industry ,Open-circuit voltage ,Chemistry ,Photovoltaic system ,Energy conversion efficiency ,021001 nanoscience & nanotechnology ,Acceptor ,0104 chemical sciences ,photovoltaics ,Fuel Technology ,Chemical engineering ,efficiency ,Chemistry (miscellaneous) ,0210 nano-technology ,business - Abstract
International audience; Borondifluoride complexes of curcuminoid derivatives end-capped with triphenylamine groups were designed for solution-processed bulk-heterojunction organic solar cells. They were obtained very simply in a one-pot synthesis from cheap building blocks. Compared to push-pull systems based on borondifluoride complexes of hydroxychalcones, curcuminoids present the donor-accept-or-donor electronic structure and exhibit significantly improved chemical and thermal stability and photovoltaic performance. Indeed, power conversion efficiency up to 4.14% and high open-circuit voltage over 1.0 V have been achieved using PC61BM as acceptor.
- Published
- 2017
- Full Text
- View/download PDF
27. Mechanical strain induced changes in electrical characteristics of flexible, non-volatile ferroelectric OFET based memory
- Author
-
Lionel Hirsch, Cédric Ayela, Mamatimin Abbas, Isabelle Dufour, Guillaume Wantz, Damien Thuau, Laboratoire de l'intégration, du matériau au système (IMS), and Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,02 engineering and technology ,Tensile strain ,010402 general chemistry ,01 natural sciences ,Ferroelectric capacitor ,Biomaterials ,Materials Chemistry ,Perpendicular ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrical and Electronic Engineering ,ComputingMilieux_MISCELLANEOUS ,ComputingMethodologies_COMPUTERGRAPHICS ,Organic field-effect transistor ,Strain (chemistry) ,business.industry ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Ferroelectricity ,Flexible electronics ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Semiconductor ,Optoelectronics ,0210 nano-technology ,business - Abstract
Investigation of mechanical strain on the electrical characteristics of ferroelectric OFET base memory is crucial for novel flexible printed circuit. In this regards, the effects of compressive and tensile strain applied in parallel, 45° angle and perpendicular to the semiconductor channel were studied showing critical consideration to be taken into account before designing flexible memories.
- Published
- 2017
- Full Text
- View/download PDF
28. Influence of traces of oxidized polymer on the performances of bulk heterojunction solar cells
- Author
-
Anthony Perthué, Guillaume Wantz, Didier Bégué, Agnès Rivaton, Thérèse Gorisse, Hugo Santos Silva, Institut de Chimie de Clermont-Ferrand (ICCF), SIGMA Clermont (SIGMA Clermont)-Institut de Chimie du CNRS (INC)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), SIGMA Clermont (SIGMA Clermont), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-13-PRGE-0006,HELIOS,Modules solaires photovoltaïques organiques de grande surface à hauts rendements stabilisés(2013), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-SIGMA Clermont (SIGMA Clermont), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Organic solar cell ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,7. Clean energy ,01 natural sciences ,Polymer solar cell ,law.invention ,chemistry.chemical_compound ,law ,Solar cell ,Materials Chemistry ,Side chain ,[CHIM]Chemical Sciences ,General Materials Science ,Alkyl ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Singlet oxygen ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Solar cell efficiency ,chemistry ,13. Climate action ,Alkoxy group ,0210 nano-technology - Abstract
International audience; A key challenge in the field of organic photovoltaics (OPVs) is making them efficient and stable devices despite their being composed of organic materials, which are susceptible to becoming photodegraded in the presence of atmospheric oxygen. It is therefore essential to determine to what extent the donor material used in the active layer can be oxidized before the oxidation results in a loss of solar cell performance. Here we mainly focused on thieno[3,4-b]thiophene-alt-benzodithiophene polymer (PTB7), and compared it to the well-known poly(3-hexylthiophene) (P3HT). The complexity of the PTB7 chemical structure, based on an alternation of benzodithiophene (BDT) and thienothiophene (TT) and flanked with alkoxy and alkyl side chains, necessitated a re-investigation of the first step of the photooxidative process. Neither the intrinsic photochemical process nor the presence of an alkoxy side chain was found to be critical for the photostability. The high initial sensitivity of PTB7 in photooxidative conditions was instead related to attack of singlet oxygen on the conjugated backbone, with this attack shown to give rise to the formation of carbonylated species. In addition, traces of PTB7 oxidation, resulting from processing or very short durations of irradiation under ambient air, were found to result in a significant drop in solar cell performance. Also in this work, PTB7 was found to be more susceptible to photooxidation than was P3HT, in line with the higher instability of PTB7-based solar cells. The novel bottom-up approach implemented in this work revealed the importance of the formation of traces of polymer oxidation products in altering solar cell efficiency. The use of unstable materials is suspected to play a key role in the poor initial performances and/or reduced lifetimes of organic solar cells.
- Published
- 2019
- Full Text
- View/download PDF
29. Halide Perovskite Precursors Dope PEDOT:PSS
- Author
-
Simon Sandrez, Claire Guyot, Lionel Hirsch, Guillaume Wantz, Zuzanna Molenda, Olivier Renault, Jean-Paul Barnes, and Tony Maindron
- Subjects
Materials science ,Chemical engineering ,PEDOT:PSS ,Doping ,Halide ,Electronic, Optical and Magnetic Materials ,Perovskite (structure) - Published
- 2021
- Full Text
- View/download PDF
30. Cross-Linkable Fullerene Derivatives for Solution-Processed n–i–p Perovskite Solar Cells
- Author
-
Thérèse Gorisse, Moritz Riede, Raghunath R. Dasari, Henry J. Snaith, Konrad Wojciechowski, Seth R. Marder, Josué F. Martínez Hardigree, Seulki Song, Ivan Ramirez, Nobuya Sakai, Olivier Dautel, Guillaume Wantz, Sociedade Portuguesa para o Estudo das Aves, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), School of Chemistry and Biochemistry, and Center for Organic Electronics and Photonics, and Georgia Institute of Technology [Atlanta]
- Subjects
Fullerene derivatives ,Materials science ,Fullerene ,Renewable Energy, Sustainability and the Environment ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Photovoltaic system ,Energy Engineering and Power Technology ,Nanotechnology ,Charge (physics) ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Fuel Technology ,Planar ,Chemical engineering ,Chemistry (miscellaneous) ,Materials Chemistry ,Solubility ,0210 nano-technology ,Layer (electronics) ,ComputingMilieux_MISCELLANEOUS ,Perovskite (structure) - Abstract
Hybrid perovskites form an extremely attractive class of materials for large scale, low-cost photovoltaic applications. Fullerene-based charge extraction layers have emerged as a viable n-type charge collection layer, and in “inverted” p–i–n device architectures the solar cells are approaching efficiencies of 20%. However, the regular n–i–p devices employing fullerenes still lag behind in performance. Here, we show that partial solubility of fullerene derivatives in the aprotic solvents used for the perovskites makes it challenging to retain integral films in multilayer solution processing. To overcome this issue we introduce cross-linkable fullerene derivatives as charge collection layers in n–i–p planar junction perovskite solar cells. The cross-linked fullerene layers are insolubilized and deliver improved performance in solar cells enabled by a controllable film thickness.
- Published
- 2016
- Full Text
- View/download PDF
31. Oligomeric Photocatalysts in Photoredox Catalysis: Toward High Performance and Low Migration Polymerization Photoinitiating Systems
- Author
-
Olivier Dautel, Didier Gigmes, Jean Pierre Fouassier, Guillaume Wantz, Jacques Lalevée, Frédéric Dumur, Emel Ay, Zaher Raad, Chimie organique et bioorganique (COB), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut de Chimie Radicalaire (ICR), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie organique et bioorganique (COB), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Materials science ,Polymers and Plastics ,Organic Chemistry ,Radical polymerization ,Cationic polymerization ,Photoredox catalysis ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,0104 chemical sciences ,Catalysis ,Inorganic Chemistry ,Polymerization ,chemistry ,Materials Chemistry ,Copolymer ,Photocatalysis ,0210 nano-technology - Abstract
International audience; In the present paper, four fluorescent materials currently used in organic light emitting diodes (OLEDs) are presented in an original way as high performance photocatalysts usable in polymerization photoinitiating systems. Their performance is excellent in free radical polymerization, cationic polymerization but also in the synthesis of interpenetrating polymer networks (IPNs). A coherent picture of the chemical mechanisms involved in these new photocatalytic systems is provided. Remarkably, an oligomeric and copolymerizable photocatalyst (PVD2) is proposed here for the first time, i.e., both the high molecular weight of PVD2 and the presence of reactive double bonds as end groups (which could be involved in a copolymerization reaction) ensure a very low migration of the catalyst from the synthesized polymer.
- Published
- 2016
- Full Text
- View/download PDF
32. Bis(diphenylamino)naphthalene host materials: careful selection of the substitution pattern for the design of fully solution-processed triple-layered electroluminescent devices
- Author
-
Guillaume Wantz, Marc Lepeltier, Didier Gigmes, Fabrice Goubard, Thanh-Tuân Bui, Sébastien Péralta, Frédéric Dumur, Gjergji Sini, Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physico-chimie des Polymères et des Interfaces (LPPI), Fédération INSTITUT DES MATÉRIAUX DE CERGY-PONTOISE (I-MAT), Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Dopant ,business.industry ,Band gap ,General Chemical Engineering ,Stacking ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,General Chemistry ,Electroluminescence ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,OLED ,Physical chemistry ,Optoelectronics ,Cyclic voltammetry ,Thin film ,0210 nano-technology ,Luminescence ,business - Abstract
International audience; Two new triarylamine-based wide bandgap small molecules differing by the position of their substituents were investigated as hosts for solution-processed organic light-emitting diodes (OLEDs). Blue-green, green and red OLEDs were realized with FIrpic, Ir(ppy)2(acac) and Ir(ppy)2(dbm) as triplet emitters respectively and the three layers constituting the device stacking were successively deposited with orthogonal solvents. Interestingly, one of the two bis(diphenylamino)naphthalene-based compounds, (NAP-1,5-DPA), furnished significantly enhanced EL performances compared to its isomeric counterpart. A maximum luminance of 3905 cd m−2 at 21 V was notably achieved with this material for devices comprising FIrpic as dopant. To get a deeper insight into these major differences in devices, the two host materials were characterized by UV-visible absorption and luminescence spectroscopy, and cyclic voltammetry. Thin films of the two materials were also examined by optical and atomic force microscopy. Thermal properties of the two hosts were also investigated as well as their electronic characteristics by theoretical calculations.
- Published
- 2016
- Full Text
- View/download PDF
33. Balanced Charge Transport Optimizes Industry‐Relevant Ternary Polymer Solar Cells
- Author
-
Robin Szymanski, Reece Henry, Samuel Stuard, Uyxing Vongsaysy, Stéphanie Courtel, Luc Vellutini, Mélanie Bertrand, Harald Ade, Sylvain Chambon, and Guillaume Wantz
- Subjects
Energy Engineering and Power Technology ,Electrical and Electronic Engineering ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials - Published
- 2020
- Full Text
- View/download PDF
34. Application of Rubrene Air-Gap Transistors as Sensitive MEMS Physical Sensors
- Author
-
Micaela Matta, Lionel Hirsch, Marco J. Pereira, Alfred J. Crosby, Guillaume Wantz, Luca Muccioli, Sai Manoj Gali, Cédric Ayela, Alejandro L. Briseno, Isabelle Dufour, Yoann Olivier, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Univ Mons, Lab Chem Novel Mat, Belgium, Université de Mons (UMons), Laboratoire de Chimie des Polymères Organiques (LCPO), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC), Polymer Science and Engineering Department [Massachusetts], University of Massachusetts System (UMASS), Pereira, Marco J., Matta, Micaela, Hirsch, Lionel, Dufour, Isabelle, Briseno, Alejandro, Gali, Sai Manoj, Olivier, Yoann, Muccioli, Luca, Crosby, Alfred, Ayela, Cédric, and Wantz, Guillaume
- Subjects
Materials science ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,organic field-effect transistor (OFET) ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,law.invention ,crystal ,chemistry.chemical_compound ,law ,General Materials Science ,rubrene ,pressure sensor ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Rubrene ,ComputingMilieux_MISCELLANEOUS ,Microelectromechanical systems ,business.industry ,air-gap transistor ,charge injection ,Transistor ,021001 nanoscience & nanotechnology ,Pressure sensor ,organic MEMS ,0104 chemical sciences ,Semiconductor ,chemistry ,Gauge factor ,Electrode ,Optoelectronics ,Materials Science (all) ,0210 nano-technology ,Air gap (plumbing) ,business - Abstract
Micro-electromechanical systems (MEMS) made of organic materials have attracted efforts for the development a new generation of physical, chemical, and biological sensors, for which the electromechanical sensitivity is the current major concern. Here, we present an organic MEMS made of a rubrene single-crystal air-gap transistor. Applying mechanical pressure on the semiconductor results in high variations in drain current: an unparalleled gauge factor above 4000 has been measured experimentally. Such a high sensitivity is induced by the modulation of charge injection at the interface between the gold electrode and the rubrene semiconductor as an unusual transducing effect. Applying these devices to the detection of acoustic pressure shows that force down to 230 nN can be measured with a resolution of 40 nN. This study demonstrates that MEMS based on rubrene air-gap transistors constitute a step forward in the development of high-performance flexible sensors.
- Published
- 2018
35. An efficient and simple tool for assessing singlet oxygen involvement in the photo-oxidation of conjugated materials
- Author
-
Olivier Dautel, Wouter Maes, Agnès Rivaton, Isabel Fraga Domínguez, Anthony Perthué, Pieter Verstappen, Guillaume Wantz, Institut de Chimie de Clermont-Ferrand (ICCF), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-SIGMA Clermont (SIGMA Clermont)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Hasselt University (UHasselt), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Organic solar cell ,Organic solar cells ,chemistry.chemical_element ,02 engineering and technology ,Conjugated system ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Oxygen ,chemistry.chemical_compound ,Key point ,Photodegradation ,Photooxidation ,degradation ,Organic electronics ,Renewable Energy, Sustainability and the Environment ,Singlet oxygen ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Conjugated materials ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,organic electronics ,chemistry ,Degradation (geology) ,0210 nano-technology - Abstract
International audience; Upon exposure to photooxidative conditions, organic materials are susceptible to undergo degradation via processes involving radical oxygen species and/or reaction with singlet oxygen (1O2). In this frame, the work herein presents a new and straightforward methodology to clarify the role of highly-reactive 1O2 in the photodegradation mechanism of conjugated materials applied in organic electronics. The general methodology consists in the comparison of the infrared signatures of the conjugated materials after the materials are exposed to photooxidative and thermooxidative conditions and in situ generated 1O2. The methodology was validated by analysing the behaviour of four donor materials commonly used in organic solar cells. Analysis of the degradation mechanism of these materials allowed exemplifying the three possible case scenarios, namely (1) both 1O2 and radical oxygen species are involved in the general photooxidation mechanism of the studied material, (2) the material is unreactive towards 1O2 and thus this species plays no role in the photooxidation process, and (3) the conjugated material is reactive towards chemically produced 1O2 but this species is not the main responsible for the photooxidative degradation of the material. In the latter two cases, a free-radical oxidation process accounts for the photooxidation of the investigated materials. The results derived from this simple, yet enlightening, methodology provide fundamental understanding about the degradation pathways of conjugated materials, which is a key point to develop not only efficient but also stable organic electronic devices.
- Published
- 2018
- Full Text
- View/download PDF
36. A solvent additive to enhance the efficiency and the thermal stability of polymer:fullerene solar cells
- Author
-
Guillaume Wantz, Thérèse Gorisse, C Lecourtier, Lionel Derue, Lionel Hirsch, Olivier Dautel, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
chemistry.chemical_classification ,Materials science ,Fullerene ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Annealing (metallurgy) ,General Chemical Engineering ,Nanotechnology ,02 engineering and technology ,General Chemistry ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Polymer solar cell ,0104 chemical sciences ,Active layer ,Solvent ,chemistry ,Molecule ,Thermal stability ,0210 nano-technology - Abstract
International audience; A novel bisazide molecule to be used in polymer–fullerene bulk heterojunction (BHJ) solar cells with two distinct functionalities is reported here. Firstly, it acts as a solvent-additive to reach optimized BHJ morphology and power conversion efficiencies without further requirements of annealing post-treatment of the active layer. Secondly, this molecule is a powerful thermally-triggered cross-linker for fullerenes enabling to freeze the BHJ morphology in its optimized form making active layers thermally stable.
- Published
- 2015
- Full Text
- View/download PDF
37. Frequency-Selective Photobleaching as a Route to Chromatic Control in Supramolecular OLED Devices
- Author
-
André Del Guerzo, Dario M. Bassani, Ken-Tsung Wong, Bo-Ji Peng, Ming-Cheng Kuo, Lionel Hirsch, Hsiang-Fang Liu, Guillaume Raffy, Guillaume Wantz, Yu-Tang Tsai, Kuo-Pi Tseng, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), and Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Université Montesquieu - Bordeaux 4-Institut de Chimie du CNRS (INC)
- Subjects
Organic electronics ,Fabrication ,Materials science ,business.industry ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Nanotechnology ,02 engineering and technology ,Electroluminescence ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Photobleaching ,Collimated light ,0104 chemical sciences ,Active layer ,OLED ,Optoelectronics ,General Materials Science ,Self-assembly ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
We report a series of molecules that spontaneously self-organize into small electroluminescent domains of sub-micrometer dimensions when dissolved in tetrahydrofuran. The self-assembled spherical aggregates have an average diameter of 300 nm and exhibit efficient energy transfer from the blue to the green or red component. The aggregates can be chromatically addressed or patterned by selective bleaching of the energy-acceptor component using a laser source. This allows the fabrication of electroluminescence devices by directly photopatterning the active layer without the need of additional steps. Submicron features (700 nm) can be achieved using a collimated light source.
- Published
- 2017
- Full Text
- View/download PDF
38. Crucial Role of the Electron Transport Layer and UV Light on the Open-Circuit Voltage Loss in Inverted Organic Solar Cells
- Author
-
Guillaume Wantz, Lionel Hirsch, Giorgio Mattana, Sylvain Chambon, Antoine Bousquet, Thérèse Gorisse, Aurélien Tournebize, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-13-JS09-0014,IN-STEP,Évaluation et Optimisation de la Stabilité des Interfaces de Cellules Solaires Photovoltaïques Organiques(2013), and ANR-13-PRGE-0006,HELIOS,Modules solaires photovoltaïques organiques de grande surface à hauts rendements stabilisés(2013)
- Subjects
Materials science ,Organic solar cell ,Oxide ,02 engineering and technology ,electron transport layer ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,X-ray photoelectron spectroscopy ,organic solar cell ,[CHIM]Chemical Sciences ,General Materials Science ,Open-circuit voltage ,business.industry ,Doping ,stability ,021001 nanoscience & nanotechnology ,burn-in ,0104 chemical sciences ,Dielectric spectroscopy ,Active layer ,UV ,Organic semiconductor ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Understanding the degradation mechanisms in organic photovoltaics is crucial in order to develop stable organic semiconductors and robust device architectures. The rapid loss of efficiency, referred to as burn-in, is a major issue to be addressed. This study reports on the influence of the electron transport layer (ETLs) and UV light on the drop of open-circuit voltage (Voc) for P3HT:PC60BM-based devices. The results show that Voc loss is induced by the UV and, more importantly, that the ETL can amplify it, with TiOx yielding a stronger drop than ZnO. Using impedance spectroscopy (IS) and X-ray photoelectron spectroscopy (XPS), different degradation mechanisms were identified according to whether the ETL is TiOx or ZnO. For TiOx-based devices, the formation of an interface dipole was identified, resulting in a loss of the flat-band potential (Vfb) and, thus, of the Voc. For ZnO-based devices, chemical modifications of the metal oxide and active layer at the interface were detected, resulting in a doping of the active layer which impacts the Voc. This study highlights the role of the architecture and, more specifically, of the ETL in the severity of burn-in and degradation pathways.
- Published
- 2017
- Full Text
- View/download PDF
39. π-Conjugated Organosilica Semiconductors: Toward Robust Organic Electronics
- Author
-
David Flot, Joël J. E. Moreau, Olivier Dautel, Damien Thuau, Sylvain Chambon, Yves Geerts, Simon Clevers, Guillaume Wantz, Pierre Valvin, Gilles H. Roche, Thomas Tjoutis, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Université libre de Bruxelles (ULB), and European Synchrotron Radiation Facility (ESRF)
- Subjects
organosilica ,Nanostructure ,Materials science ,Nanotechnology ,02 engineering and technology ,Conjugated system ,010402 general chemistry ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,hybrid materials ,nanostructures ,Thin film ,ComputingMilieux_MISCELLANEOUS ,Organic electronics ,business.industry ,field-effect transistors ,technology, industry, and agriculture ,Généralités ,021001 nanoscience & nanotechnology ,equipment and supplies ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Semiconductor ,thin films ,Field-effect transistor ,0210 nano-technology ,Hybrid material ,business - Abstract
The use of novel organosilica materials embedding π-conjugated moieties as semiconductor into field-effect transistors is demonstrated. The chosen π-conjugated core is a [1]benzothieno[3,2-b][1]benzothiophene that is modified with hydrolyzable and crosslinkable triethoxysilyl moieties. After polycondensation, this compound forms a hybrid material composed of charge transport pathways as well as insulating sublayers made of silicon oxide (SiOx). The hybrid material behaves as a semiconductor and is subsequently integrated as active layer into field-effect transistors. These precursors show J-type aggregation that evolves toward H-type aggregates during the sol–gel process, which improve charge transport. Taking advantage of the sol–gel chemistry involved here, hybrid field-effect transistors that are fully crosslinked with covalent bonds are built. Molecules are crosslinked to each other, covalently bonded to the silicon oxide dielectric, and also covalently bonded to the gold electrodes, thanks to the use of an appropriate additional interfacial monolayer. This is the first report of fully covalent transistors. Those devices with modest mobilities show impressive resilience against polar, aliphatic, and aromatics solvents even under sonication. This study opens the route toward a new class of hybrid materials to create highly robust electronic applications., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2017
- Full Text
- View/download PDF
40. Synthesis and properties of a novel narrow band gap oligomeric diketopyrrolopyrrole-based organic semiconductor
- Author
-
Mylène Le Borgne, Guillaume Wantz, Yuning Li, Jesse Quinn, Natalie Stingelin, and Jaime Martín
- Subjects
Electron mobility ,Condensed Matter - Materials Science ,Materials science ,Organic solar cell ,business.industry ,Band gap ,Process Chemistry and Technology ,General Chemical Engineering ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Acceptor ,0104 chemical sciences ,Active layer ,Organic semiconductor ,Semiconductor ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business - Abstract
A trimer of diketopyrrolopyrole (DPP), Tri-BTDPP, was synthesized and characterized. Tri-BTDPP has a HOMO level of −5.34 eV, a low band gap of 1.33 eV, and a hole mobility of ∼10 −3 cm 2 V −1 s −1 in organic field effect transistors (OFETs). Organic photovoltaic (OPV) devices using the donor/acceptor blends of Tri-BTDPP and PC 71 BM exhibited low power conversion efficiencies (PCE) of up to 0.72%, even though the desirable optical and electronic characteristics of this compound as a donor semiconductor for achieving high performance for OPV. Through an intensive study of the active layer using AFM, XRD, and DSC, it was found that Tri-BTDPP and PC 71 BM were unable to intermix and formed oversized Tri-BTDPP phases, resulting in poor charge separation. Some guidance on how to improve the OPV performance of Tri-DPP compounds is provided.
- Published
- 2017
41. Bipolar Electrochemistry with Organic Single Crystals for Wireless Synthesis of Metal–Organic Janus Objects and Asymmetric Photovoltage Generation
- Author
-
Cécile Mézière, Marcin Kielar, Lionel Hirsch, Guillaume Wantz, Iuliia Malytska, Narcis Avarvari, Laurent Bouffier, Alexander Kuhn, MOLTECH-ANJOU (MOLTECH-ANJOU), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Centre National de la Recherche Scientifique (CNRS), Biodiversité, Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), MOLTECH-Anjou, Institut de Chimie du CNRS (INC)-Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Université Sciences et Technologies - Bordeaux 1-Université Montesquieu - Bordeaux 4-Institut de Chimie du CNRS (INC), Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), and Université d'Angers (UA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Fabrication ,chemistry.chemical_element ,Janus particles ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Metal ,Bipolar electrochemistry ,Janus ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,021001 nanoscience & nanotechnology ,Copper ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,chemistry ,visual_art ,Electrode ,visual_art.visual_art_medium ,0210 nano-technology ,Carbon - Abstract
Bipolar electrochemistry has recently emerged as a very unique method to address conducting particles in a wireless manner. The technique is often applied to the fabrication of Janus particles; however the chemical nature of the bipolar electrode has been essentially limited to carbon- or metal-based materials. Here, we report for the first time the use of conducting organic single crystals as bipolar electrodes for the preparation of a new generation of Janus objects. Fabre and Bechgaard salts involving respectively tetrathia- and tetraselenafulvalene were selected for proof-of-concept experiments. Such an approach allows to preserve the integrity of these fragile substrates because it necessitates neither electronic wiring nor mechanical contact. The site-selective electrodeposition of copper is successfully achieved, leading thus to a new metal–organic Janus structure. Subsequently, asymmetric generation of photovoltage under illumination is achieved due to the anisotropic presence of copper, making th...
- Published
- 2017
- Full Text
- View/download PDF
42. Bis-Azide Low-Band Gap Cross-Linkable Molecule N 3 -[CPDT(FBTTh 2 ) 2 ] to Fully Thermally Stabilize Organic Solar Cells Based on P3HT:PC 61 BM
- Author
-
Romain Peresutti, Thomas Tjoutis, Hussein Awada, Guillaume Wantz, Thérèse Gorisse, Joël J. E. Moreau, Olivier Dautel, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Laboratoire de l'intégration, du matériau au système (IMS), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1
- Subjects
Materials science ,Fullerene ,Organic solar cell ,Band gap ,General Chemical Engineering ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,7. Clean energy ,01 natural sciences ,Polymer solar cell ,lcsh:Chemistry ,chemistry.chemical_compound ,Thiophene ,Organic chemistry ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,General Chemistry ,Polymer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,lcsh:QD1-999 ,chemistry ,Quantum efficiency ,Azide ,0210 nano-technology - Abstract
We synthesized a novel bis-azide low-band gap cross-linkable molecule N3-[CPDT(FBTTh2)2] with wide absorption. This compound is of interest as an additive in polymer/fullerene bulk heterojunction solar cells. In addition to providing efficient thermal stabilization of the morphology, the additive can harvest additional solar light compared with pristine poly(3-hexyl thiophene) to improve the power-conversion efficiency (PCE). The additional donor material was visualized from the appearance of additional external quantum efficiency contributions between 650 and 800 nm. An open-circuit voltage increase of ∼2% compensates the decrease in the short-circuit current of ∼2% to achieve a fully thermally stabilized PCE of 3.5% after 24 h of annealing at 150 °C.
- Published
- 2017
- Full Text
- View/download PDF
43. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell
- Author
-
Laurent Bouffier, Faleh AlTal, Guillaume Wantz, Shulun Chen, Shiyu Hu, Jun Gao, Biodiversité, Gènes et Communautés, Institut National de la Recherche Agronomique (INRA), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Biodiversité, Gènes & Communautés (BioGeCo), Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1
- Subjects
Materials science ,business.industry ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Analytical chemistry ,Biasing ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Electrochemical cell ,Electric field ,Electrode ,Electrode array ,Bipolar electrochemistry ,Optoelectronics ,General Materials Science ,Light-emitting electrochemical cell ,Homojunction ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p–n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p–n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter’s greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p–n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p–n junctions connected in series.
- Published
- 2017
- Full Text
- View/download PDF
44. Improved mechanical adhesion and electronic stability of organic solar cells with thermal ageing: the role of diffusion at the hole extraction interface
- Author
-
Elodie Destouesse, Nicholas Rolston, William Greenbank, Sylvain Chambon, Lionel Hirsch, Guillaume Wantz, Reinhold H. Dauskardt, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, ANR-13-JS09-0014,IN-STEP,Évaluation et Optimisation de la Stabilité des Interfaces de Cellules Solaires Photovoltaïques Organiques(2013), and ANR-13-PRGE-0006,HELIOS,Modules solaires photovoltaïques organiques de grande surface à hauts rendements stabilisés(2013)
- Subjects
Kelvin probe force microscope ,Materials science ,Organic solar cell ,Renewable Energy, Sustainability and the Environment ,business.industry ,Photovoltaic system ,Nanotechnology ,02 engineering and technology ,General Chemistry ,Adhesion ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,Characterization (materials science) ,[SPI.MAT]Engineering Sciences [physics]/Materials ,X-ray photoelectron spectroscopy ,Electrode ,Optoelectronics ,General Materials Science ,Diffusion (business) ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
Organic photovoltaic (OPV) solar cells are a promising option for cheap, renewable energy, but must improve in their stability. This study examines changes in the IV parameters of inverted OPV devices with thermal ageing and correlates them to changes in the mechanical stability of the devices observed by fracture analysis. In particular, the role that the use of different materials in the hole transport layer (HTL) and metal electrode has in determining the stability (both mechanical and electronic) of the device is studied. Data from a range of characterization techniques (including Kelvin probe analysis and X-ray photoelectron spectroscopy elemental depth profiling) are used to correlate changes in device structure and performance, demonstrating the presence of inter-layer diffusion when silver is used as an electrode material. This inter-diffusion has the beneficial effect of improving the adhesion of the electrode to the device, but is correlated to declines in the performance of the device when used in conjunction with MoO3 as an HTL. An improvement in adhesion is also seen with aluminium electrodes, but without any signs of diffusion, showing that an improvement in the mechanical stability of a device when thermally aged need not come at the expense of performance stability.
- Published
- 2017
- Full Text
- View/download PDF
45. New 3,3′-(ethane-1,2-diylidene)bis(indolin-2-one) (EBI)-based small molecule semiconductors for organic solar cells
- Author
-
Jesse Quinn, Mylène Le Borgne, Yuning Li, Guillaume Wantz, Natalie Stingelin, Jaime Martin, Commission of the European Communities, Instituto de Microelectronica de Madrid (IMM), CNM-CSIC, Department of Electrical and Computer Engineering [Waterloo] (ECE), University of Waterloo [Waterloo], Laboratoire de l'intégration, du matériau au système (IMS), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1
- Subjects
THICK ACTIVE LAYERS ,Technology ,Materials science ,Organic solar cell ,CONVERSION EFFICIENCY ,Materials Science ,10-PERCENT ,FOS: Physical sciences ,Electron donor ,Materials Science, Multidisciplinary ,02 engineering and technology ,010402 general chemistry ,DONOR ,7. Clean energy ,01 natural sciences ,Physics, Applied ,ISOINDIGO ,chemistry.chemical_compound ,Materials Chemistry ,Thiophene ,Organic chemistry ,Moiety ,Molecule ,Benzofuran ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Condensed Matter - Materials Science ,Science & Technology ,SOLVENT ADDITIVES ,Physics ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,Electron acceptor ,021001 nanoscience & nanotechnology ,Acceptor ,COPOLYMERS ,cond-mat.mtrl-sci ,0104 chemical sciences ,Crystallography ,DEVICE PERFORMANCE ,chemistry ,Physical Sciences ,FIELD-EFFECT TRANSISTORS ,0210 nano-technology ,CONJUGATED POLYMERS - Abstract
A series of donor-acceptor-donor (D-A-D) structured small-molecule compounds, with 3,3'-(ethane-1,2-diylidene)bis(indolin-2-one) (EBI) as a novel electron acceptor building block coupled with various electron donor end-capping moieties (thiophene, bithiophene and benzofuran), were synthesized and characterized. When the fused-ring benzofuran is combined to EBI (EBI-BF), the molecules displayed a perfectly planar conformation and afforded the best charge tranport properties among these EBI compounds with a hole mobility of up to 0.021 cm2 V-1 s-1. All EBI-based small molecules were used as donor material along with a PC61BM acceptor for the fabrication of solution-processed bulk-heterojunction (BHJ) solar cells. The best performing photovoltaic devices are based on the EBI derivative using the bithiophene end-capping moiety (EBI-2T) with a maximum power conversion efficiency (PCE) of 1.92%, owing to the broad absorption spectra of EBI-2T and the appropriate morphology of the BHJ. With the aim of establishing a correlation between the molecular structure and the thin film morphology, differential scanning calorimetry, atomic force microscopy and X-ray diffraction analysis were performed on neat and blend films of each material.
- Published
- 2017
- Full Text
- View/download PDF
46. The Importance of Materials Design to Make Ions Flow: Toward Novel Materials Platforms for Bioelectronics Applications
- Author
-
Celia M. Pacheco-Moreno, Guillaume Wantz, Murielle Schreck, Molly M. Stevens, Philippe Bourgun, Olivier Dautel, Natalie Stingelin, Alberto D. Scaccabarozzi, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), and Commission of the European Communities
- Subjects
Technology ,Materials science ,Polymers ,Chemistry, Multidisciplinary ,Materials Science ,ORGANIC ELECTROCHEMICAL TRANSISTORS ,Nanotechnology ,Materials Science, Multidisciplinary ,Biocompatible Materials ,02 engineering and technology ,semiconductors ,Materials design ,bioelectronics ,010402 general chemistry ,01 natural sciences ,09 Engineering ,Physics, Applied ,ion transport ,General Materials Science ,Nanoscience & Nanotechnology ,insulator blends ,mixed conductors ,ComputingMilieux_MISCELLANEOUS ,Organic electronics ,Ions ,Bioelectronics ,Science & Technology ,02 Physical Sciences ,Chemistry, Physical ,Mechanical Engineering ,Physics ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,021001 nanoscience & nanotechnology ,STATE ,0104 chemical sciences ,Chemistry ,Physics, Condensed Matter ,Mechanics of Materials ,Physical Sciences ,Surface modification ,Science & Technology - Other Topics ,Electronics ,0210 nano-technology ,CHARGE ,03 Chemical Sciences ,Chemical design - Abstract
Chemical design criteria for materials for bioelectronics applications using a series of copolymer derivatives based on poly(3-hexylthiophene) are established. Directed chemical design via side-chain functionalization with polar groups allows manipulation of ion transport and ion-to-electron transduction. Insights gained will permit increased use of the plethora of materials employed in the organic electronics area for application in the bioelectronics field.
- Published
- 2017
- Full Text
- View/download PDF
47. Multifunctional ternary additive in bulk heterojunction OPV: increased device performance and stability
- Author
-
Trevor M. Grant, Thérèse Gorisse, Benoît H. Lessard, Guillaume Wantz, Olivier Dautel, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Photocurrent ,Materials science ,Renewable Energy, Sustainability and the Environment ,Photovoltaic system ,Energy conversion efficiency ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Nanotechnology ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Polymer solar cell ,0104 chemical sciences ,Active layer ,Chemical engineering ,General Materials Science ,0210 nano-technology ,Ternary operation ,Short circuit ,ComputingMilieux_MISCELLANEOUS ,Overall efficiency - Abstract
Great improvements in the development of organic photovoltaic (OPV) devices have been reported over the years; however, the overall efficiency and operational lifetimes of the devices must be improved. Maintaining a stable power conversion efficiency (PCE) in bulk heterojunction OPV devices can be achieved by utilizing cross-linkable ternary additives that freeze the optimal morphology. However, these additives currently do not contribute to improving the PCE of the device therefore limiting their overall effectiveness. In this study we present a dual functional bis(6-azidohexanoate)silicon phthalocyanine ((HxN3)2-SiPc) with cross-linking groups and near IR absorption as a ternary additive in poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PC61BM) devices. As an additive at 10 wt% with respect to PC61BM, (HxN3)2-SiPc increased the short circuit current density (Jsc) by ≈9% due to increased photocurrent generation in the near IR region. In addition, devices utilizing (HxN3)2-SiPc exhibited a 97% PCE retention after thermal ageing at 150 °C for 23 h (compared to 47% retention for baseline devices) showing the compound is an effective cross-linker. These findings represent the first example of a multifunctional dye additive in an OPV device that simultaneously broadens the spectral coverage, resulting in added photogeneration, and stabilizes the active layer morphology, resulting in increased PCE retention.
- Published
- 2017
- Full Text
- View/download PDF
48. Fluorinated benzothiadiazole-based low band gap copolymers to enhance open-circuit voltage and efficiency of polymer solar cells
- Author
-
Lionel Flandin, Ali Nourdine, Guillaume Wantz, Mamatimin Abbas, Hussein Awada, Hussein Medlej, Christine Dagron-Lartigau, Matériaux organiques à propriétés spécifiques (LMOPS), Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), and Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,Open-circuit voltage ,Band gap ,Organic Chemistry ,Energy conversion efficiency ,General Physics and Astronomy ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Acceptor ,Polymer solar cell ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,Polymer chemistry ,Materials Chemistry ,Copolymer ,[CHIM]Chemical Sciences ,Physical chemistry ,0210 nano-technology ,HOMO/LUMO - Abstract
cited By 8; International audience; Two donor-acceptor (D-A) copolymers containing dithienosilole (DTS) donor unit and unsubstituted benzothiadiazole (BT) or fluorinated benzothiadiazole (ffBT) acceptor unit, PDTSBT and PDTSffBT, were synthesized by Stille cross coupling polymerization and tested for application in polymer solar cells (PSCs). The new alternating copolymer (PDTSffBT) possesses both a low optical bandgap (Eg = 1.54 eV) and a deep highest occupied molecular orbital energy level (HOMO) (-5.46 eV). It was found that the introduction of the two electron-withdrawing fluorine atoms on the benzothiadiazole unit results in a decrease of the HOMO energy level with slight effect on the lowest unoccupied molecular orbital (LUMO) as observed through cyclic voltammetry (CV) analysis. Inclusion of fluorine atoms also leads to an increase in the interchain interaction in the PDTSffBT copolymer with respect to its analogue PDTSBT copolymer according to the X-ray diffraction measurements (XRD). When PDTSffBT:PC71BM blends are tested in bulk heterojunction (BHJ)-polymer solar cells, the cells display a short-circuit current (J SC) of 8.82 mA/cm2, a high open circuit voltage (V OC) of 0.74 V, and a Fill Factor (FF) of 45%, giving an overall power conversion efficiency (PCE) of 2.93%, compared to 1.64% for the BT-containing cells prepared in parallel under identical conditions. The significant performance enhancement results from the higher VOC and J SC in the ffBT-containing cells. These results unambiguously indicate that the fluorination is an efficient method to modulate the energetic levels and improve the photovoltaic performances of the widely used benzothiadiazole-based low bandgap copolymers. © 2014 Elsevier Ltd. All rights reserved.
- Published
- 2014
- Full Text
- View/download PDF
49. Saturated and Multi-Colored Electroluminescence from Quantum Dots Based Light Emitting Electrochemical Cells
- Author
-
Guillaume Wantz, Gang Qian, Andrew R. Davis, Ying Lin, Kenneth R. Carter, and James J. Watkins
- Subjects
Materials science ,business.industry ,Electroluminescence ,Condensed Matter Physics ,Cathode ,Electronic, Optical and Magnetic Materials ,Electrochemical cell ,law.invention ,Active layer ,Indium tin oxide ,Biomaterials ,chemistry.chemical_compound ,chemistry ,PEDOT:PSS ,Quantum dot ,law ,Electrochemistry ,Polyethylene terephthalate ,Optoelectronics ,business - Abstract
Novel light emitting electrochemical cells (LECs) are fabricated using CdSe-CdS (core-shell) quantum dots (QDs) of tuned size and emission blended with polyvinylcarbazole (PVK) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). The performances of cells constructed using sequential device layers of indium tin oxide (ITO), poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), the QD/PVK/IL active layer, and Al are evaluated. Only color saturated electroluminescence from the QDs is observed, without any other emissions from the polymer host or the electrolyte. Blue, green, and red QD-LECs are prepared. The maximum brightness (≈1000 cd m-2) and current efficiency (1.9 cd A-1) are comparable to polymer LECs and multilayer QD-LEDs. White-light QD-LECs with Commission Internationale d'Eclairage (CIE) coordinates (0.33, 0.33) are prepared by tuning the mass ratio of R:G:B QDs in the active layer and voltage applied. Transparent QD-LECs fabricated using transparent silver nanowire (AgNW) composites as the cathode yield an average transmittance greater than 88% over the visible range. Flexible devices are demonstrated by replacing the glass substrates with polyethylene terephthalate (PET).
- Published
- 2014
- Full Text
- View/download PDF
50. Perylene derivatives as photoinitiators in blue light sensitive cationic or radical curable films and panchromatic thiol-ene polymerizable films
- Author
-
Frédéric Dumur, Pu Xiao, Harald Bock, Jacques Lalevée, Bernadette Graff, Fabrice Morlet-Savary, Michel Frigoli, Guillaume Wantz, Didier Gigmes, Jean Pierre Fouassier, Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Lavoisier de Versailles (ILV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre de recherches Paul Pascal (CRPP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1
- Subjects
Blue light Cationic photopolymerization ,Photoinitiator ,Materials science ,Polymers and Plastics ,Organic Chemistry ,Photodissociation ,Radical polymerization ,Cationic polymerization ,General Physics and Astronomy ,Perylene derivative ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Thiol-ene photopolymerization ,Photochemistry ,Fluorescence ,Radical photopolymerization ,[CHIM.POLY]Chemical Sciences/Polymers ,Photopolymer ,Polymerization ,Polymer chemistry ,Materials Chemistry ,Flash photolysis - Abstract
International audience; The perylene derivatives (PTCTE, BPTI and DPPDI) combined with an iodonium salt or an amine (and optionally an additive) are used as photoinitiating systems to initiate the cationic polymerization (CP) of epoxides, the free radical polymerization (FRP) of acrylates, or the thiol-ene polymerization (TEP) of a Trithiol/divinylether mixture under different irradiation sources i.e. very soft halogen lamp or laser diodes at 473 nm or 457 nm (blue light). Upon a blue light exposure, the PTCTE based systems are very efficient for CP and FRP and better than the camphorquinone (CQ) based reference systems. Interestingly, the combination of PTCTE with previously studied green light and red light sensitive perylene derivatives and an iodonium salt ensures the manufacture of a panchromatic thiol-ene polymerizable film (400-650 nm) usable under various household LED bulbs irradiations (i.e. blue, green, yellow or red lights). The photochemical mechanisms are studied by steady state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis and electron spin resonance spin-trapping techniques
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.