Back to Search Start Over

Crucial Role of the Electron Transport Layer and UV Light on the Open-Circuit Voltage Loss in Inverted Organic Solar Cells

Authors :
Guillaume Wantz
Lionel Hirsch
Giorgio Mattana
Sylvain Chambon
Antoine Bousquet
Thérèse Gorisse
Aurélien Tournebize
Laboratoire de l'intégration, du matériau au système (IMS)
Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM)
Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
ANR-13-JS09-0014,IN-STEP,Évaluation et Optimisation de la Stabilité des Interfaces de Cellules Solaires Photovoltaïques Organiques(2013)
ANR-13-PRGE-0006,HELIOS,Modules solaires photovoltaïques organiques de grande surface à hauts rendements stabilisés(2013)
Source :
ACS Applied Materials & Interfaces, ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2017, 9 (39), pp.34131-34138. ⟨10.1021/acsami.7b09059⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

International audience; Understanding the degradation mechanisms in organic photovoltaics is crucial in order to develop stable organic semiconductors and robust device architectures. The rapid loss of efficiency, referred to as burn-in, is a major issue to be addressed. This study reports on the influence of the electron transport layer (ETLs) and UV light on the drop of open-circuit voltage (Voc) for P3HT:PC60BM-based devices. The results show that Voc loss is induced by the UV and, more importantly, that the ETL can amplify it, with TiOx yielding a stronger drop than ZnO. Using impedance spectroscopy (IS) and X-ray photoelectron spectroscopy (XPS), different degradation mechanisms were identified according to whether the ETL is TiOx or ZnO. For TiOx-based devices, the formation of an interface dipole was identified, resulting in a loss of the flat-band potential (Vfb) and, thus, of the Voc. For ZnO-based devices, chemical modifications of the metal oxide and active layer at the interface were detected, resulting in a doping of the active layer which impacts the Voc. This study highlights the role of the architecture and, more specifically, of the ETL in the severity of burn-in and degradation pathways.

Details

Language :
English
ISSN :
19448244 and 19448252
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces, ACS Applied Materials & Interfaces, Washington, D.C. : American Chemical Society, 2017, 9 (39), pp.34131-34138. ⟨10.1021/acsami.7b09059⟩
Accession number :
edsair.doi.dedup.....4951967e062a6ecde7f08065b2c31d35
Full Text :
https://doi.org/10.1021/acsami.7b09059⟩