Back to Search Start Over

Structural Odd–Even Effect Impacting the Dimensionality of Transport in BTBT‐C n OH Organic Field Effect Transistors

Authors :
Gudrun Bruckner
Dan Dumitrescu
Olivier Dautel
Gilles H. Roche
Arie van der Lee
Joël J. E. Moreau
Guillaume Wantz
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
Carinthian Tech Research (CTR)
Institut Européen des membranes (IEM)
Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)
Laboratoire de Chimie Organometallique
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)
Laboratoire de l'intégration, du matériau au système (IMS)
Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
Source :
Advanced Electronic Materials, Advanced Electronic Materials, Wiley, In press, Advanced Electronic Materials, pp.2100265. ⟨10.1002/aelm.202100265⟩
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

International audience; The synthesis and characterization of a series of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) molecules disubstituted by hydroxy aliphatic chains in positions 2 and 7 (BTBT-CnOH), where the intralayer molecular stacking alternates between a classical and an inverted herringbone mode as a function of whether the alkyl sides chains have an even or an odd number of carbon atoms are reported. This odd–even effect does not only affect the interlayer distance of the lamellar structures and the melting points, but also the electronic properties. The BTBT-CnOH odd series develops a classical herringbone pattern with edge-to-edge S⋯S interaction chains linked together by face-to-edge S⋯S interaction chains with 2D mobility. However, the even series has only edge-to-edge interactions in an inverted herringbone organization and thus only a 1D conducting character. These two types of herringbone patterns have different field effect transistor characteristics and mobilities, those of the odd members being systematically higher than their even neighbors. This is the first example of an odd–even effect impacting the electronic properties of an organic semiconductor.

Details

ISSN :
2199160X
Volume :
8
Database :
OpenAIRE
Journal :
Advanced Electronic Materials
Accession number :
edsair.doi.dedup.....e0ccad6e6894aecf128f54c44434232d
Full Text :
https://doi.org/10.1002/aelm.202100265