59 results on '"G. Revet"'
Search Results
2. Detailed characterization of a laboratory magnetized supercritical collisionless shock and of the associated proton energization
- Author
-
W. Yao, A. Fazzini, S. N. Chen, K. Burdonov, P. Antici, J. Béard, S. Bolaños, A. Ciardi, R. Diab, E. D. Filippov, S. Kisyov, V. Lelasseux, M. Miceli, Q. Moreno, V. Nastasa, S. Orlando, S. Pikuz, D. C. Popescu, G. Revet, X. Ribeyre, E. d’Humières, and J. Fuchs
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation. In the absence of particle collisions in the system, theory shows that the interaction of an expanding plasma with a pre-existing electromagnetic structure (as in our case) is able to induce energy dissipation and allow shock formation. Shock formation can alternatively take place when two plasmas interact, through microscopic instabilities inducing electromagnetic fields that are able in turn to mediate energy dissipation and shock formation. Using our platform in which we couple a rapidly expanding plasma induced by high-power lasers (JLF/Titan at LLNL and LULI2000) with high-strength magnetic fields, we have investigated the generation of a magnetized collisionless shock and the associated particle energization. We have characterized the shock as being collisionless and supercritical. We report here on measurements of the plasma density and temperature, the electromagnetic field structures, and the particle energization in the experiments, under various conditions of ambient plasma and magnetic field. We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations. As a companion paper to Yao et al. [Nat. Phys. 17, 1177–1182 (2021)], here we show additional results of the experiments and simulations, providing more information to allow their reproduction and to demonstrate the robustness of our interpretation of the proton energization mechanism as being shock surfing acceleration.
- Published
- 2022
- Full Text
- View/download PDF
3. Laser-accelerated particle beams for stress testing of materials
- Author
-
M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. N. Chen, G. Famulari, T. Gangolf, G. Revet, A. Schiavi, M. Senzacqua, and P. Antici
- Subjects
Science - Abstract
Recently, there has been significant progress on the application of laser-generated proton beams in material science. Here the authors demonstrate the benefit of employing such beams in stress testing different materials by examining their mechanical, optical, electrical, and morphological properties.
- Published
- 2018
- Full Text
- View/download PDF
4. X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars
- Author
-
E. D. Filippov, I. Yu. Skobelev, G. Revet, S. N. Chen, B. Khiar, A. Ciardi, D. Khaghani, D. P. Higginson, S. A. Pikuz, and J. Fuchs
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Recent achievements in laboratory astrophysics experiments with high-power lasers have allowed progress in our understanding of the early stages of star formation. In particular, we have recently demonstrated the possibility of simulating in the laboratory the process of the accretion of matter on young stars [G. Revet et al., Sci. Adv. 3, e1700982 (2017)]. The present paper focuses on x-ray spectroscopy methods that allow us to investigate the complex plasma hydrodynamics involved in such experiments. We demonstrate that we can infer the formation of a plasma shell, surrounding the accretion column at the location of impact with the stellar surface, and thus resolve the present discrepancies between mass accretion rates derived from x-ray and optical-radiation astronomical observations originating from the same object. In our experiments, the accretion column is modeled by having a collimated narrow (1 mm diameter) plasma stream first propagate along the lines of a large-scale external magnetic field and then impact onto an obstacle, mimicking the high-density region of the stellar chromosphere. A combined approach using steady-state and quasi-stationary models was successfully applied to measure the parameters of the plasma all along its propagation, at the impact site, and in the structure surrounding the impact region. The formation of a hot plasma shell, surrounding the denser and colder core, formed by the incoming stream of matter is observed near the obstacle using x-ray spatially resolved spectroscopy.
- Published
- 2019
- Full Text
- View/download PDF
5. Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers
- Author
-
S. Bolaños, J. Béard, G. Revet, S. N. Chen, S. Pikuz, E. Filippov, M. Safronova, M. Cerchez, O. Willi, M. Starodubtsev, and J. Fuchs
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients. However, for a long time, this technique was not considered a viable means of electron acceleration due to the large intrinsic divergence (∼50° half-angle) of the electrons. Recently, a reduction in this divergence to 10°–20° half-angle has been obtained, using plasma-based magnetic fields or very high contrast laser pulses to extract the electrons into the vacuum. Here we show that we can further improve the electron beam collimation, down to ∼1.5° half-angle, of a high-charge (6 nC) beam, and in a highly reproducible manner, while using standard stand-alone 100 TW-class laser pulses. This is obtained by embedding the laser-target interaction in an external, large-scale (cm), homogeneous, extremely stable, and high-strength (20 T) magnetic field that is independent of the laser. With upcoming multi-PW, high repetition-rate lasers, this technique opens the door to achieving even higher charges (>100 nC).
- Published
- 2019
- Full Text
- View/download PDF
6. Publisher Correction: Laser-accelerated particle beams for stress testing of materials
- Author
-
M. Barberio, M. Scisciò, S. Vallières, F. Cardelli, S. N. Chen, G. Famulari, T. Gangolf, G. Revet, A. Schiavi, M. Senzacqua, and P. Antici
- Subjects
Science - Abstract
The original version of the Supplementary Information associated with this Article contained an error in Supplementary Figure 3 in which all panels, with the exception of the bottom-left ‘Ti’ panel, were blank. The HTML has been updated to include a corrected version of the Supplementary Information.
- Published
- 2018
- Full Text
- View/download PDF
7. X-ray diagnostics of laser-induced plasma embedded in strong magnetic field with a varied orientation
- Author
-
E.D. Filippov, S.S. Makarov, W. Yao, G. Revet, A. Fazzini, B. Khiar, S. Bolanos, K.F. Burdonov, S.N. Chen, M. Starodubtsev, J. Beard, A. Ciardi, I.Yu. Skobelev, S.A. Pikuz, and J. Fuchs
- Published
- 2022
- Full Text
- View/download PDF
8. Detailed characterization of laboratory magnetized super-critical collisionless shock and of the associated proton energization
- Author
-
W. Yao, A. Fazzini, S. N. Chen, K. Burdonov, P. Antici, J. Béard, S. Bolaños, A. Ciardi, R. Diab, E. D. Filippov, S. Kisyov, V. Lelasseux, M. Miceli, Q. Moreno, V. Nastasa, S. Orlando, S. Pikuz, D. C. Popescu, G. Revet, X. Ribeyre, E. d’Humières, J. Fuchs, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Horia Hulubei National Institute for Physics and Nuclear Engineering, IAP, Russian Academy of Sciences, 603155, Nizhny Novgorod, Russia, Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Joint Institute for High Temperatures of the RAS (JIHT), Russian Academy of Sciences [Moscow] (RAS), Università degli studi di Palermo - University of Palermo, INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institute of Physics of the Czech Academy of Sciences (FZU / CAS), Czech Academy of Sciences [Prague] (CAS), Moscow State Engineering Physics Institute (MEPhI), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Yao W., Fazzini A., Chen S.N., Burdonov K., Antici P., Beard J., Bolanos S., Ciardi A., Diab R., Filippov E.D., Kisyov S., Lelasseux V., Miceli M., Moreno Q., Nastasa V., Orlando S., Pikuz S., Popescu D.C., Revet G., Ribeyre X., D'Humieres E., and Fuchs J.
- Subjects
Nuclear and High Energy Physics ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,magnetic field ,QC770-798 ,shock waves ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Physics - Plasma Physics ,010305 fluids & plasmas ,Plasma Physics (physics.plasm-ph) ,Settore FIS/05 - Astronomia E Astrofisica ,Nuclear Energy and Engineering ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,Physics::Space Physics ,Electrical and Electronic Engineering ,010306 general physics - Abstract
Collisionless shocks are ubiquitous in the Universe and are held responsible for the production of nonthermal particles and high-energy radiation. In the absence of particle collisions in the system, theory shows that the interaction of an expanding plasma with a pre-existing electromagnetic structure (as in our case) is able to induce energy dissipation and allow shock formation. Shock formation can alternatively take place when two plasmas interact, through microscopic instabilities inducing electromagnetic fields that are able in turn to mediate energy dissipation and shock formation. Using our platform in which we couple a rapidly expanding plasma induced by high-power lasers (JLF/Titan at LLNL and LULI2000) with high-strength magnetic fields, we have investigated the generation of a magnetized collisionless shock and the associated particle energization. We have characterized the shock as being collisionless and supercritical. We report here on measurements of the plasma density and temperature, the electromagnetic field structures, and the particle energization in the experiments, under various conditions of ambient plasma and magnetic field. We have also modeled the formation of the shocks using macroscopic hydrodynamic simulations and the associated particle acceleration using kinetic particle-in-cell simulations. As a companion paper to Yao et al. [Nat. Phys. 17, 1177–1182 (2021)], here we show additional results of the experiments and simulations, providing more information to allow their reproduction and to demonstrate the robustness of our interpretation of the proton energization mechanism as being shock surfing acceleration.
- Published
- 2022
- Full Text
- View/download PDF
9. Inferring possible magnetic field strength of accreting inflows in EXor-type objects from scaled laboratory experiments
- Author
-
Mikhail Gushchin, Rosaria Bonito, K. Gubskiy, Efim A. Khazanov, Julien Fuchs, A. V. Strikovskiy, V. I. Gundorin, A. Kuznetsov, S. N. Ryazantsev, S. A. Pikuz, Salvatore Orlando, Alexander Soloviev, W. P. Yao, I. Shaykin, Teresa Giannini, R. Zemskov, Ivan V. Yakovlev, Shihua Chen, N. A. Aidakina, I. Zudin, Andrey Shaykin, M. V. Starodubtsev, Vladislav Ginzburg, K. Burdonov, A. A. Kuzmin, J. Béard, G. Revet, A. A. Kochetkov, Andrea Ciardi, S. V. Korobkov, Costanza Argiroffi, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institute of Applied Physics of RAS, Russian Academy of Sciences [Moscow] (RAS), INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), INAF - Osservatorio Astronomico di Roma (OAR), Università degli studi di Palermo - University of Palermo, Horia Hulubei National Institute for Physics and Nuclear Engineering, Moscow State Engineering Physics Institute (MEPhI), Joint Institute for High Temperatures of the RAS (JIHT), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], This work was partly done within the LABEX Plas@Par, the DIM ACAV funded by the Region Ile-de-France, and supported by Grant No. 11-IDEX- 0004-02 from ANR, The research leading to these results is supported by Extreme Light Infrastructure Nuclear Physics (ELINP) Phase II, a project co-financed by the Romanian Government and European Union through the European Regional Development Fund, and by the project ELI-RO-2020-23 funded by IFA (Romania)., European Project: ERC787539,GENESIS, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), HEP, INSPIRE, Burdonov K., Bonito R., Giannini T., Aidakina N., Argiroffi C., Beard J., Chen S.N., Ciardi A., Ginzburg V., Gubskiy K., Gundorin V., Gushchin M., Kochetkov A., Korobkov S., Kuzmin A., Kuznetsov A., Pikuz S., Revet G., Ryazantsev S., Shaykin A., Shaykin I., Soloviev A., Starodubtsev M., Strikovskiy A., Yao W., Yakovlev I., Zemskov R., Zudin I., Khazanov E., Orlando S., and Fuchs J.
- Subjects
Shock wave ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Field strength ,Astrophysics ,stars: pre-main sequence ,01 natural sciences ,magnetohydrodynamics (MHD) ,Settore FIS/05 - Astronomia E Astrofisica ,accretion ,0103 physical sciences ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,010306 general physics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,[PHYS]Physics [physics] ,accretion disks ,Astronomy and Astrophysics ,Radius ,Plasma ,shock waves ,Accretion, accretion disks ,Accretion (astrophysics) ,Magnetic field ,T Tauri star ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,instabilities ,stars: individual: V1118 Ori ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Aims. EXor-type objects are protostars that display powerful UV-optical outbursts caused by intermittent and powerful events of magnetospheric accretion. These objects are not yet well investigated and are quite difficult to characterize. Several parameters, such as plasma stream velocities, characteristic densities, and temperatures, can be retrieved from present observations. As of yet, however, there is no information about the magnetic field values and the exact underlying accretion scenario is also under discussion. Methods. We use laboratory plasmas, created by a high power laser impacting a solid target or by a plasma gun injector, and make these plasmas propagate perpendicularly to a strong external magnetic field. The propagating plasmas are found to be well scaled to the presently inferred parameters of EXor-type accretion event, thus allowing us to study the behaviour of such episodic accretion processes in scaled conditions. Results. We propose a scenario of additional matter accretion in the equatorial plane, which claims to explain the increased accretion rates of the EXor objects, supported by the experimental demonstration of effective plasma propagation across the magnetic field. In particular, our laboratory investigation allows us to determine that the field strength in the accretion stream of EXor objects, in a position intermediate between the truncation radius and the stellar surface, should be of the order of 100 G. This, in turn, suggests a field strength of a few kilogausses on the stellar surface, which is similar to values inferred from observations of classical T Tauri stars.
- Published
- 2021
- Full Text
- View/download PDF
10. Laboratory evidence for proton energization by collisionless shock surfing
- Author
-
G. Revet, K. Burdonov, J. Béard, A. Fazzini, E. D. Filippov, S. Bolaños, Julien Fuchs, V. Lelasseux, S. A. Pikuz, D. C. Popescu, Salvatore Orlando, W. P. Yao, V. Nastasa, Patrizio Antici, Andrea Ciardi, S. Kisyov, Quentin Moreno, Marco Miceli, Xavier Ribeyre, Emmanuel d'Humières, R. Diab, Sophia Chen, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), ITA, FRA, CAN, CZE, ROU, RUS, Yao W., Fazzini A., Chen S.N., Burdonov K., Antici P., Beard J., Bolanos S., Ciardi A., Diab R., Filippov E.D., Kisyov S., Lelasseux V., Miceli M., Moreno Q., Nastasa V., Orlando S., Pikuz S., Popescu D.C., Revet G., Ribeyre X., d'Humieres E., Fuchs J., Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), and Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB)
- Subjects
Shock wave ,Proton ,Astrophysics::High Energy Astrophysical Phenomena ,General Physics and Astronomy ,FOS: Physical sciences ,01 natural sciences ,Acceleration ,Settore FIS/05 - Astronomia E Astrofisica ,0103 physical sciences ,Bow shock (aerodynamics) ,010306 general physics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Mechanics ,plasmas ,Physics - Plasma Physics ,Charged particle ,Computer Science::Computers and Society ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Magnetic field ,Shock (mechanics) ,Plasma Physics (physics.plasm-ph) ,Supernova ,13. Climate action ,Physics::Space Physics ,Physics::Accelerator Physics - Abstract
Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of kiloelectronvolts. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide direct evidence of early-stage ion energization by collisionless shocks but also highlight the role played by this particular mechanism in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect that induced shock front ripples could have on acceleration processes. Proton acceleration by a super-critical collisionless shock is observed in laboratory experiments, and numerical simulations suggest shock surfing as the underlying acceleration mechanism.
- Published
- 2021
- Full Text
- View/download PDF
11. Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field
- Author
-
Mirela Cerchez, Drew Higginson, E. D. Filippov, T. Gangolf, S. A. Pikuz, I. Yu. Skobelev, B. Khiar, G. Revet, Tommaso Vinci, B. Olmi, Salvatore Orlando, J. Béard, O. Willi, Rosaria Bonito, M. V. Starodubtsev, Costanza Argiroffi, M. Safronova, M. Ouillé, S. N. Ryazantsev, Julien Fuchs, Andrea Ciardi, Andrea Mignone, Sophia Chen, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institute of Applied Physics (IAP, Nizhny Novgorod), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Flash Center for Computational Science (FCCS), University of Chicago, Joint Institute for High Temperatures of the RAS (JIHT), Russian Academy of Sciences [Moscow] (RAS), Dipartimento di Fisica e Chimica [Palermo] (DiFC), Università degli studi di Palermo - University of Palermo, INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf], Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, ELI NP Dept, Reactorului Str 30, Magurele 077125, Romania, Lawrence Livermore National Laboratory (LLNL), Dipartimento di Fisica Generale, Università di Torino, INAF - Osservatorio Astrofisico di Arcetri (OAA), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Revet G., Khiar B., Filippov E., Argiroffi C., Beard J., Bonito R., Cerchez M., Chen S.N., Gangolf T., Higginson D.P., Mignone A., Olmi B., Ouille M., Ryazantsev S.N., Skobelev I.Y., Safronova M.I., Starodubtsev M., Vinci T., Willi O., Pikuz S., Orlando S., Ciardi A., and Fuchs J.
- Subjects
Science ,Astrophysics::High Energy Astrophysical Phenomena ,Nozzle ,outflows, magnetohydrodynamics(MHD), shockwaves, astrophysical jets ,General Physics and Astronomy ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Collimated light ,Settore FIS/05 - Astronomia E Astrofisica ,Ambient field ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Magnetic pressure ,010306 general physics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Laboratory astrophysics ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Jet (fluid) ,Multidisciplinary ,Laser-produced plasmas ,General Chemistry ,Physics - Plasma Physics ,Magnetic field ,Plasma Physics (physics.plasm-ph) ,Astrophysics - Solar and Stellar Astrophysics ,Physics::Accelerator Physics ,Outflow ,High Energy Physics::Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide a possible interpretation for the observed structuring of astrophysical jets. Jet modulation could be interpreted as the signature of changes over time in the outflow/ambient field angle, and the change in the direction of the jet could be the signature of changes in the direction of the ambient field., Mass outflow is a common process in astrophysical objects. Here the authors investigate in which conditions an astrophysically-scaled laser-produced plasma flow can be collimated and evolves in the presence of a misaligned external magnetic field.
- Published
- 2021
- Full Text
- View/download PDF
12. Enhanced x-ray emission arising from laser-plasma confinement by a strong transverse magnetic field
- Author
-
Amira Guediche, Julien Fuchs, S. A. Pikuz, J. Béard, K. F. Burdonov, S. Bolaños, W. P. Yao, M. V. Starodubtsev, Jack Hare, E. D. Filippov, G. Revet, Igor Yu. Skobelev, Denis Romanovsky, Sophia Chen, S. S. Makarov, Andrea Ciardi, University of Nizhny Novgorod, Joint Institute for High Temperatures of the RAS (JIHT), Russian Academy of Sciences [Moscow] (RAS), Lomonosov Moscow State University (MSU), Institute of Applied Physics of RAS, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Horia Hulubei National Institute for Physics and Nuclear Engineering, Imperial College London, The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Lobachevsky State University [Nizhni Novgorod], Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
Materials science ,Science ,FOS: Physical sciences ,Magnetically confined plasmas ,01 natural sciences ,Article ,010305 fluids & plasmas ,law.invention ,Magnetization ,law ,Physics::Plasma Physics ,0103 physical sciences ,Emissivity ,Radiative transfer ,010306 general physics ,[PHYS]Physics [physics] ,Multidisciplinary ,Laser-produced plasmas ,Plasma ,Laser ,Physics - Plasma Physics ,Magnetic field ,Plasma Physics (physics.plasm-ph) ,Transverse plane ,Physics::Space Physics ,Medicine ,Atomic physics ,Magnetohydrodynamics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We analyze, using experiments and 3D MHD numerical simulations, the dynamics and radiative properties of a plasma ablated by a laser (1 ns, 10$^{12}$-10$^{13}$ W/cm$^2$) from a solid target, as it expands into a homogeneous, strong magnetic field (up to 30 T) transverse to its main expansion axis. We find that as soon as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe a dense slab that rapidly expands into vacuum after ~ 8 ns; however, this slab contains only ~ 2 % of the total plasma. As a result of the higher density and increased heating of the confined plasma, there is a net enhancement of the total x-ray emissivity induced by the magnetization., 15 pages, 4 figures, Supplementary Information, submitted to PRL
- Published
- 2020
- Full Text
- View/download PDF
13. Laboratory evidence for asymmetric accretion structure upon slanted matter impact in young stars
- Author
-
Rosaria Bonito, Salvatore Orlando, O. Willi, Julien Fuchs, S. N. Chen, K. F. Burdonov, Mirela Cerchez, J. Béard, G. Revet, S. A. Pikuz, M. V. Starodubtsev, Rafael L. Rodríguez, E. D. Filippov, Costanza Argiroffi, Andrea Ciardi, G. Espinosa, S. Bolanos, Michal Smid, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Burdonov K., Revet G., Bonito R., Argiroffi C., Beard J., Bolanos S., Cerchez M., Chen S.N., Ciardi A., Espinosa G., Filippov E., Pikuz S., Rodriguez R., Smid M., Starodubtsev M., Willi O., Orlando S., Fuchs J., Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), Università degli studi di Palermo - University of Palermo, Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf], Horia Hulubei National Institute for Physics and Nuclear Engineering, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Universidad de las Palmas de Gran Canaria (ULPGC), Joint Institute for High Temperatures of the RAS (JIHT), Russian Academy of Sciences [Moscow] (RAS), Institute of Applied Physics (IAP, Nizhny Novgorod), Moscow State Engineering Physics Institute (MEPhI), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), This work was partly done within the LABEX Plas@Par, the DIM ACAV funded by the Region Ilede-France, This work was supported by Grant No. 11-IDEX- 0004-02 from ANR (France), ANR-12-BS09-0025,SILAMPA,Simuler en laboratoire des écoulements de plasmas magnétisés pour l'astrophysique(2012), European Project: ERC787539,GENESIS, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), and Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Shock wave ,stars ,Accretion ,Magnetohydrodynamics (MHD) ,Young stellar object ,FOS: Physical sciences ,X-rays: stars ,Astrophysics ,01 natural sciences ,Shock waves ,Settore FIS/05 - Astronomia E Astrofisica ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010306 general physics ,Ejecta ,010303 astronomy & astrophysics ,Chromosphere ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,pre-main sequence -X-rays ,Astronomy and Astrophysics ,Plasma ,Planetary system ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,accretion disks -instabilities -magnetohydrodynamics (MHD) -shock waves -stars ,Accretion (astrophysics) ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Instabilities ,Accretion disks ,Stars: pre-main sequence ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Aims. Investigating the process of matter accretion onto forming stars through scaled experiments in the laboratory is important in order to better understand star and planetary system formation and evolution. Such experiments can indeed complement observations by providing access to the processes with spatial and temporal resolution. A previous investigation revealed the existence of a two-component stream: a hot shell surrounding a cooler inner stream. The shell was formed by matter laterally ejected upon impact and refocused by the local magnetic field. That laboratory investigation was limited to normal incidence impacts. However, in young stellar objects, the complex structure of magnetic fields causes variability of the incident angles of the accretion columns. This led us to undertake an investigation, using laboratory plasmas, of the consequence of having a slanted accretion impacting a young star. Methods. Here, we used high power laser interactions and strong magnetic field generation in the laboratory, complemented by numerical simulations, to study the asymmetry induced upon accretion structures when columns of matter impact the surface of young stars with an oblique angle. Results. Compared to the scenario where matter accretes perpendicularly to the star surface, we observe a strongly asymmetric plasma structure, strong lateral ejecta of matter, poor confinement of the accreted material, and reduced heating compared to the normal incidence case. Thus, slanted accretion is a configuration that seems to be capable of inducing perturbations of the chromosphere and hence possibly influencing the level of activity of the corona.
- Published
- 2020
- Full Text
- View/download PDF
14. X-ray spectroscopy evidence for plasma shell formation in experiments modeling accretion columns in young stars
- Author
-
G. Revet, Sophia Chen, E. D. Filippov, B. Khiar, Drew Higginson, Andrea Ciardi, Julien Fuchs, D. Khaghani, I. Yu. Skobelev, S. A. Pikuz, Joint Institute for High Temperatures of the RAS (JIHT), Russian Academy of Sciences [Moscow] (RAS), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Paris (ENS-PSL)
- Subjects
Physics ,Nuclear and High Energy Physics ,Star formation ,Stellar atmosphere ,Astrophysics ,Plasma ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Accretion (astrophysics) ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,010305 fluids & plasmas ,Stars ,Nuclear Energy and Engineering ,13. Climate action ,0103 physical sciences ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Astrophysical plasma ,Plasma diagnostics ,Electrical and Electronic Engineering ,010306 general physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Chromosphere ,Astrophysics::Galaxy Astrophysics - Abstract
Recent achievements in laboratory astrophysics experiments with high-power lasers have allowed progress in our understanding of the early stages of star formation. In particular, we have recently demonstrated the possibility of simulating in the laboratory the process of the accretion of matter on young stars [G. Revet et al., Sci. Adv. 3, e1700982 (2017)]. The present paper focuses on x-ray spectroscopy methods that allow us to investigate the complex plasma hydrodynamics involved in such experiments. We demonstrate that we can infer the formation of a plasma shell, surrounding the accretion column at the location of impact with the stellar surface, and thus resolve the present discrepancies between mass accretion rates derived from x-ray and optical-radiation astronomical observations originating from the same object. In our experiments, the accretion column is modeled by having a collimated narrow (1 mm diameter) plasma stream first propagate along the lines of a large-scale external magnetic field and then impact onto an obstacle, mimicking the high-density region of the stellar chromosphere. A combined approach using steady-state and quasi-stationary models was successfully applied to measure the parameters of the plasma all along its propagation, at the impact site, and in the structure surrounding the impact region. The formation of a hot plasma shell, surrounding the denser and colder core, formed by the incoming stream of matter is observed near the obstacle using x-ray spatially resolved spectroscopy.
- Published
- 2019
- Full Text
- View/download PDF
15. The response function of Fujifilm BAS-TR imaging plates to laser-accelerated titanium ions
- Author
-
Erhard Gaul, G. Revet, Todd Ditmire, Hiroshi Sawada, Gilliss Dyer, Michael E Donovan, Julien Fuchs, E. McCary, Joseph Strehlow, M. Spinks, S. Zhang, T. S. Daykin, Gregory Kemp, P. Forestier-Colleoni, J. Peebles, Drew Higginson, Mikael Martinez, Farhat Beg, Harry McLean, C. McGuffey, Mathieu Bailly-Grandvaux, Centre d'Etudes Lasers Intenses et Applications (CELIA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Center for Ultrafast Optical Sciences (CUOS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Laboratory for lasers energetics - LLE (New-York, USA), University of Rochester [USA], Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Universidad de Cantabria [Santander], Lawrence Livermore National Laboratory (LLNL), University of California [San Diego] (UC San Diego), University of California, Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and University of California (UC)
- Subjects
010302 applied physics ,Materials science ,Detector ,Radiation ,Laser ,01 natural sciences ,7. Clean energy ,Charged particle ,010305 fluids & plasmas ,law.invention ,Ion ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Atomic number ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Atomic physics ,Luminescence ,Particle beam ,Instrumentation ,ComputingMilieux_MISCELLANEOUS - Abstract
Calibrated diagnostics for energetic particle detection allow for the systematic study of charged particle sources. The Fujifilm BAS-TR imaging plate (IP) is a reusable phosphorescent detector for radiation applications such as x-ray and particle beam detection. The BAS-TR IP has been absolutely calibrated to many low-Z (low proton number) ions, and extending these calibrations to the mid-Z regime is beneficial for the study of laser-driven ion sources. The Texas Petawatt Laser was used to generate energetic ions from a 100 nm titanium foil, and charge states Ti10+ through Ti12+, ranging from 6 to 27 MeV, were analyzed for calibration. A plastic detector of CR-39 with evenly placed slots was mounted in front of the IP to count the number of ions that correspond with the IP levels of photo-stimulated luminescence (PSL). A response curve was fitted to the data, yielding a model of the PSL signal vs ion energy. Comparisons to other published response curves are also presented, illustrating the trend of PSL/nucleon decreasing with increasing ion mass.
- Published
- 2019
- Full Text
- View/download PDF
16. Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers
- Author
-
G. Revet, M. Safronova, Oswald Willi, Mirela Cerchez, J. Béard, Sophia Chen, Julien Fuchs, M. V. Starodubtsev, E. D. Filippov, S. A. Pikuz, S. Bolanos, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Applied Physics of RAS, Russian Academy of Sciences [Moscow] (RAS), Horia Hulubei National Institute of Physics and Nuclear Engineering (NIPNE), IFIN-HH, Joint Institute for High Temperatures of the RAS (JIHT), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf], ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-17-CE30-0026,PiNNaCLE,Développement d'une ligne de neutrons pulsés compacte et de haute brillance(2017), European Project: 654148,H2020,H2020-INFRAIA-2014-2015,LASERLAB-EUROPE(2015), European Project: ERC787539,GENESIS, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and National Research Nuclear University MEPhI
- Subjects
Nuclear and High Energy Physics ,Materials science ,Electron ,Plasma ,Laser ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Collimated light ,010305 fluids & plasmas ,Magnetic field ,law.invention ,Acceleration ,Nuclear Energy and Engineering ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Cathode ray ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Electrical and Electronic Engineering ,Atomic physics ,010306 general physics ,Beam (structure) ,ComputingMilieux_MISCELLANEOUS - Abstract
Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients. However, for a long time, this technique was not considered a viable means of electron acceleration due to the large intrinsic divergence (∼50° half-angle) of the electrons. Recently, a reduction in this divergence to 10°–20° half-angle has been obtained, using plasma-based magnetic fields or very high contrast laser pulses to extract the electrons into the vacuum. Here we show that we can further improve the electron beam collimation, down to ∼1.5° half-angle, of a high-charge (6 nC) beam, and in a highly reproducible manner, while using standard stand-alone 100 TW-class laser pulses. This is obtained by embedding the laser-target interaction in an external, large-scale (cm), homogeneous, extremely stable, and high-strength (20 T) magnetic field that is independent of the laser. With upcoming multi-PW, high repetition-rate lasers, this technique opens the door to achieving even higher charges (>100 nC).Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients. However, for a long time, this technique was not considered a viable means of electron acceleration due to the large intrinsic divergence (∼50° half-angle) of the electrons. Recently, a reduction in this divergence to 10°–20° half-angle has been obtained, using plasma-based magnetic fields or very high contrast laser pulses to extract the electrons into the vacuum. Here we show that we can further improve the electron beam collimation, down to ∼1.5° half-angle, of a high-charge (6 nC) beam, and in a highly reproducible manner, while using standard stand-alone 100 TW-class laser pulses. This is obtained by embedding the laser-target interaction in an external, large-scale (cm), homogeneous, extremely stable, and high-strength (20 T) magnetic field that is independent of t...
- Published
- 2019
- Full Text
- View/download PDF
17. Experimental stand for studying the impact of laser-accelerated protons on biological objects
- Author
-
A. M. Sergeev, A. A. Kuzmin, Ivan V. Yakovlev, Shihua Chen, I. A. Shaikin, Andrey Shaykin, Vladislav Ginzburg, A. A. Eremeev, A. A. Soloviev, R. R. Osmanov, A. Sladkov, A V Maslennikova, M. V. Starodubtsev, N I Ignatova, Efim A. Khazanov, Julien Fuchs, K. F. Burdonov, and G. Revet
- Subjects
Physics ,Proton ,business.industry ,Biological objects ,Magnetic separation ,Statistical and Nonlinear Physics ,Electron ,Radiation ,Laser ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Power level ,010305 fluids & plasmas ,Electronic, Optical and Magnetic Materials ,law.invention ,Hadron therapy ,Optics ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,Atomic physics ,010306 general physics ,business - Abstract
An original experimental stand is presented, aimed at studying the impact of high-energy protons, produced by the laser-plasma interaction at a petawatt power level, on biological objects. In the course of pilot experiments with the energy of laser-accelerated protons up to 25 MeV, the possibility is demonstrated of transferring doses up to 10 Gy to the object of study in a single shot with the magnetic separation of protons from parasitic X-ray radiation and fast electrons. The technique of irradiating the cell culture HeLa Kyoto and measuring the fraction of survived cells is developed. The ways of optimising the parameters of proton beams and the suitable methods of their separation with respect to energy and transporting to the studied living objects are discussed. The construction of the stand is intended for the improvement of laser technologies for hadron therapy of malignant neoplasms.
- Published
- 2016
- Full Text
- View/download PDF
18. Analyzing x-ray emission of target impurities to determine the parameters of recombining laser plasma
- Author
-
S. A. Pikuz, G. Revet, E. D. Filippov, Julien Fuchs, I. Yu Skobelev, and Shihua Chen
- Subjects
History ,Materials science ,law ,Impurity ,X-ray ,Plasma ,Atomic physics ,Laser ,Computer Science Applications ,Education ,law.invention - Abstract
In this work, the possibility of the implementation of impurities in the compositions of solid thick targets irradiated by intense lasers is discussed in order to solve problems of optically-thick plasma diagnostics. Calculations were conducted for relative intensities of oxygen resonance lines (H-like—3p–1s, 4p–1s, 5p–1s, 6p–1s, 7p–1s transitions) in a recombination quasi-stationary model to obtain plasma parameters. In the experiment with 0.6 ns, 40 J laser pulses focused to 600 μm focal spot at solid polyvinylidene chloride target the parameters of plasma jet stopped by solid oxidized Teflon obstacle were studied by means of spatially-resolved x-ray spectroscopy.
- Published
- 2020
- Full Text
- View/download PDF
19. Laser experiment for the study of accretion dynamics of Young Stellar Objects: design and scaling
- Author
-
G. Revet, Andrea Ciardi, M. V. Starodubtsev, J. Béard, Salvatore Orlando, Rosaria Bonito, B. Khiar, Julien Fuchs, Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire National des Champs Magnétiques Pulsés (LNCMP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Istituto di Astrofisica Spaziale e Fisica cosmica - Palermo (IASF-Pa), Istituto Nazionale di Astrofisica (INAF), Institute of Applied Physics (IAP, Nizhny Novgorod), École normale supérieure - Paris (ENS-PSL), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ITA, USA, FRA, ROU, and RUS
- Subjects
Nuclear and High Energy Physics ,Young stellar object ,FOS: Physical sciences ,01 natural sciences ,010305 fluids & plasmas ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010306 general physics ,Adiabatic process ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Radiation ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Plasma ,Accretion (astrophysics) ,Physics - Plasma Physics ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Magnetic field ,Computational physics ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Plasma Physics (physics.plasm-ph) ,Stars ,T Tauri star ,Astrophysics - Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Magnetohydrodynamics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
A new experimental set-up designed to investigate the accretion dynamics in newly born stars is presented. It takes advantage of a magnetically collimated stream produced by coupling a laser-generated expanding plasma to a $2\times 10^{5}~{G}\ (20~{T})$ externally applied magnetic field. The stream is used as the accretion column and is launched onto an obstacle target that mimics the stellar surface. This setup has been used to investigate in details the accretion dynamics, as reported in [G. Revet et al., Science Advances 3, e1700982 (2017), arXiv:1708.02528}. Here, the characteristics of the stream are detailed and a link between the experimental plasma expansion and a 1D adiabatic expansion model is presented. Dimensionless numbers are also calculated in order to characterize the experimental flow and its closeness to the ideal MHD regime. We build a bridge between our experimental plasma dynamics and the one taking place in the Classical T Tauri Stars (CTTSs), and we find that our set-up is representative of a high plasma $\beta$ CTTS accretion case.
- Published
- 2019
- Full Text
- View/download PDF
20. X-ray daignostics of hydrodynamic phenomena in laser- induced astrophysically-relevant plasma
- Author
-
E. D. Filippov, I. Yu. Skobelev, S. N. Ryazantsev, G. Revet, S. N. Chen, J. Fuchs, and S. A. Pikuz
- Published
- 2019
- Full Text
- View/download PDF
21. Laser-Produced Magnetic-Rayleigh-Taylor Unstable Plasma Slabs in a 20 T Magnetic Field
- Author
-
J. Béard, S. S. Makarov, Andrea Ciardi, Shihua Chen, Mirela Cerchez, E. D. Filippov, T. Gangolf, B. Khiar, G. Revet, S. A. Pikuz, Oswald Willi, M. Ouillé, A. A. Soloviev, Julien Fuchs, M. Safronova, K. F. Burdonov, M. V. Starodubtsev, I. Yu. Skobelev, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire National des Champs Magnétiques Pulsés (LNCMP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institute of Applied Physics (IAP, Nizhny Novgorod), Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf], Joint Institute for High Temperatures of the RAS (JIHT), Russian Academy of Sciences [Moscow] (RAS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Lobachevsky State University [Nizhni Novgorod], Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Horia Hulubei National Institute of Physics and Nuclear Engineering (NIPNE), IFIN-HH, ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), ANR-10-EQPX-0029,EQUIP@MESO,Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale(2010), ANR-11-LABX-0062,PLAS@PAR,PLASMAS à PARIS, au delà des frontières(2011), European Project: 787539,GENESIS - 10.3030/787539, and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
General Physics and Astronomy ,FOS: Physical sciences ,01 natural sciences ,Instability ,Collimated light ,law.invention ,Physics::Fluid Dynamics ,symbols.namesake ,law ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Rayleigh scattering ,010306 general physics ,Inertial confinement fusion ,ComputingMilieux_MISCELLANEOUS ,Physics ,Condensed matter physics ,Plasma ,Laser ,Physics - Plasma Physics ,Magnetic field ,Plasma Physics (physics.plasm-ph) ,Physics::Space Physics ,Slab ,symbols - Abstract
Magnetized laser-produced plasmas are central to many novel laboratory astrophysics and inertial confinement fusion studies, as well as in industrial applications. Here we provide the first complete description of the three-dimensional dynamics of a laser-driven plasma plume expanding in a 20 T transverse magnetic field. The plasma is collimated by the magnetic field into a slender, rapidly elongating slab, whose plasma-vacuum interface is unstable to the growth of the "classical", fluid-like magnetized Rayleigh-Taylor instability., Comment: Accepted for publication in Physical Review Letters
- Published
- 2019
- Full Text
- View/download PDF
22. Laser-accelerated particle beams for stress testing of materials
- Author
-
Marianna Barberio, Sophia Chen, G. Revet, M. Senzacqua, T. Gangolf, Patrizio Antici, Angelo Schiavi, Fabio Cardelli, M. Scisciò, Gabriel Famulari, S. Vallières, Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institute of Applied Physics of RAS, Russian Academy of Sciences [Moscow] (RAS), McGill University Health Center [Montreal] (MUHC), and Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome]
- Subjects
Genetics and Molecular Biology (all) ,Materials science ,Proton ,Field (physics) ,Science ,General Physics and Astronomy ,Stress testing (software) ,01 natural sciences ,Biochemistry ,Article ,General Biochemistry, Genetics and Molecular Biology ,010305 fluids & plasmas ,law.invention ,Physics and Astronomy (all) ,law ,0103 physical sciences ,Irradiation ,010306 general physics ,lcsh:Science ,[PHYS]Physics [physics] ,Multidisciplinary ,business.industry ,Chemistry (all) ,General Chemistry ,Laser ,Publisher Correction ,Particle acceleration ,Optoelectronics ,Physics::Accelerator Physics ,Thermal damage ,lcsh:Q ,Biochemistry, Genetics and Molecular Biology (all) ,business ,Accelerated particle - Abstract
Laser-driven particle acceleration, obtained by irradiation of a solid target using an ultra-intense (I > 1018 W/cm2) short-pulse (duration, Recently, there has been significant progress on the application of laser-generated proton beams in material science. Here the authors demonstrate the benefit of employing such beams in stress testing different materials by examining their mechanical, optical, electrical, and morphological properties.
- Published
- 2018
- Full Text
- View/download PDF
23. Scintillators in High-Power Laser-Driven Experiments
- Author
-
V. Méot, M. Tarisien, J. L. Henares, C. Manailescu, M. Gugiu, F. Hannachi, M. Versteegen, F. Negoita, T. Bonnet, L. Tudor, F. Gobet, G. Revet, X. Raymond, F. Boulay, C. Baccou, S. Kisyov, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Photomultiplier ,Photon ,Astrophysics::High Energy Astrophysical Phenomena ,Electron ,Scintillator ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Optics ,law ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Electrical and Electronic Engineering ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Physics ,[PHYS]Physics [physics] ,business.industry ,Bremsstrahlung ,Laser ,Afterglow ,Nuclear Energy and Engineering ,Light emission ,business - Abstract
Nowadays, it is possible to accelerate bunches of particles in the interaction of ultrahigh intensity (UHI) laser pulses with matter. Electrons, protons, ions, and high-energy photon beams can be produced in experiments and reach kinetic energies close to hundreds of megaelectronvolts for protons and gigaelectronvolts for electrons and for the associated Bremsstrahlung photons. At these energies, these beams can induce a large variety of nuclear reactions, which can be detected and studied using $\gamma $ -ray spectroscopy techniques. At standard accelerator facilities, scintillator detectors are commonly used to perform prompt $\gamma $ -ray spectrometry studies. However, during laser–matter interactions, high fluxes of X-rays (mostly soft) are generated, which lead to instantaneous huge energy deposits (~1 $\mu \text{J}$ ) in these scintillators. Depending on the laser characteristics (energy and pulse duration), the detector recovery time after these X-ray flashes can reach several milliseconds, which makes any prompt or “in beam” measurement impossible. The origin of this long-duration signal is investigated in the case of a LaBr3 crystal coupled to different photodetectors. While it was impossible using standard photomultiplier tubes to detect $\gamma $ -ray emissions before a few milliseconds after a laser shot, we could, using a hybrid photodiode, resolve single $\gamma $ -ray emission a few tens of microseconds after the laser shot. Furthermore, we have also shown that the LaBr3 scintillator presents an unexpected long-lived light emission (afterglow). Directions are suggested for future studies in order to minimize the effects of this afterglow emission.
- Published
- 2018
- Full Text
- View/download PDF
24. Comparison of Dimensionless Parameters in Astrophysical MHD Systems and in Laboratory Experiments
- Author
-
K. F. Burdonov, E. P. Kurbatov, Julien Fuchs, G. Revet, Dmitry Bisikalo, M. V. Starodubtsev, Shouyuan Chen, A. A. Solov’ev, Andrea Ciardi, Institute of Astronomy of the Russian Academy of Sciences (INASAN), Institute of Applied Physics, Université Paris Cité (UPCité), Observatoire de Paris, Université Paris sciences et lettres (PSL), Laboratoire pour l'utilisation des lasers intenses (LULI), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,AM Herculis ,Accretion (meteorology) ,Astronomy and Astrophysics ,Plasma ,01 natural sciences ,Magnetic field ,Computational physics ,Intermediate polar ,Physics::Plasma Physics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Polar ,Astrophysics::Earth and Planetary Astrophysics ,Magnetohydrodynamics ,010306 general physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Dimensionless quantity - Abstract
International audience; Estimates of typical parameters of accretion flows in the representative intermediate polar EX Hydrae, the polar AM Herculis, and the "hot Jupiter" WASP-12b are presented. Dimensionless parameters of astrophysical systems are compared with those of laboratory experiments on laser ablation in magnetic fields. It is shown that laboratory simulations of astrophysical flows is possible in principle, provided that some adjustment to the magnetic field, plasma density, and plasma velocity are made.
- Published
- 2018
- Full Text
- View/download PDF
25. Detailed characterization of laser-produced astrophysically-relevant jets formed via a poloidal magnetic nozzle
- Author
-
A. A. Soloviev, K. Naughton, Benjamin Khiar, Drew Higginson, R. Riquier, E. D. Filippov, Oliver Portugall, Caterina Riconda, G. Revet, S. A. Pikuz, Tommaso Vinci, S. N. Ryazantsev, I. Yu. Skobelev, D. Khaghani, M. Blecher, H. Pépin, Oswald Willi, Marco Borghesi, J. Béard, K. F. Burdonov, M. V. Starodubtsev, Julien Fuchs, S. N. Chen, Andrea Ciardi, Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire National des Champs Magnétiques Pulsés (LNCMP), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Queen's University [Belfast] (QUB), Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique [Québec] (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Joint Institute for High Temperatures of the RAS (JIHT), Russian Academy of Sciences [Moscow] (RAS), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Don State Technical University, Institute of Applied Physics (IAP, Nizhny Novgorod), Dipartimento di Fisica 'Giuseppe Occhialini' = Department of Physics 'Giuseppe Occhialini' [Milano-Bicocca], Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB), Institut für Laser und Plasmaphysik, Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf], École normale supérieure - Paris (ENS Paris), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), and Università degli Studi di Milano-Bicocca [Milano] (UNIMIB)
- Subjects
Astrophysical plasmas ,Nuclear and High Energy Physics ,Tokamak ,Atmospheric-pressure plasma ,Outflows ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Magnetohydrodynamics ,law ,Physics::Plasma Physics ,0103 physical sciences ,Jets ,Magnetic pressure ,010306 general physics ,Magnetosphere particle motion ,ComputingMilieux_MISCELLANEOUS ,Physics ,[PHYS]Physics [physics] ,Jet (fluid) ,Radiation ,Plasma ,Magnetic field ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Atomic physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Laser-plasma interactions - Abstract
The collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure when the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M∼20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (1012–1013 W/cm2), target materials and orientations of the magnetic field. Plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.
- Published
- 2017
- Full Text
- View/download PDF
26. X-ray spectroscopy diagnostics to study complex supersonic plasma flows with astrophysical relevance in laser plasma
- Author
-
S. A. Pikuz, E. D. Filippov, S. N. Ryazantsev, I. Yu. Skobelev, G. Revet, D. P. Higginson, S. N. Chen, B. Albertazzi, A. A. Soloviev, J. Beard, B. Khiar, A. Ciardi, A. Ya. Faenov, H. Pepin, and J. Fuchs
- Published
- 2017
- Full Text
- View/download PDF
27. Collimated protons accelerated from an overdense gas jet irradiated by a 1 µm wavelength high-intensity short-pulse laser
- Author
-
S. N. Chen, M. Vranic, T. Gangolf, E. Boella, P. Antici, M. Bailly-Grandvaux, P. Loiseau, H. Pépin, G. Revet, J. J. Santos, A. M. Schroer, Mikhail Starodubtsev, O. Willi, L. O. Silva, E. d’Humières, J. Fuchs
- Published
- 2017
- Full Text
- View/download PDF
28. Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures
- Author
-
Vladislav Ginzburg, Ivan V. Yakovlev, A. V. Korzhimanov, A. A. Eremeev, A. A. Soloviev, S. A. Pikuz, M. V. Starodubtsev, A. A. Kuzmin, G. V. Pokrovskiy, Tatiana Pikuz, A. Sladkov, G. Revet, Efim A. Khazanov, Andrey Shaykin, Julien Fuchs, S. N. Chen, K. F. Burdonov, I. A. Shaikin, and R. R. Osmanov
- Subjects
Chirped pulse amplification ,Coupling ,Resistive touchscreen ,Multidisciplinary ,Materials science ,business.industry ,lcsh:R ,lcsh:Medicine ,Laser ,01 natural sciences ,Article ,010305 fluids & plasmas ,law.invention ,Pulse (physics) ,Optics ,law ,0103 physical sciences ,State of matter ,Slab ,Deposition (phase transition) ,lcsh:Q ,010306 general physics ,business ,lcsh:Science - Abstract
Heating efficiently solid-density, or even compressed, matter has been a long-sought goal in order to allow investigation of the properties of such state of matter of interest for various domains, e.g. astrophysics. High-power lasers, pinches, and more recently Free-Electron-Lasers (FELs) have been used in this respect. Here we show that by using the high-power, high-contrast “PEARL” laser (Institute of Applied Physics-Russian Academy of Science, Nizhny Novgorod, Russia) delivering 7.5 J in a 60 fs laser pulse, such coupling can be efficiently obtained, resulting in heating of a slab of solid-density Al of 0.8 µm thickness at a temperature of 300 eV, and with minimal density gradients. The characterization of the target heating is achieved combining X-ray spectrometry and measurement of the protons accelerated from the Al slab. The measured heating conditions are consistent with a three-temperatures model that simulates resistive and collisional heating of the bulk induced by the hot electrons. Such effective laser energy deposition is achieved owing to the intrinsic high contrast of the laser which results from the Optical Parametric Chirped Pulse Amplification technology it is based on, allowing to attain high target temperatures in a very compact manner, e.g. in comparison with large-scale FEL facilities.
- Published
- 2016
29. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability
- Author
-
Julien Fuchs, Sophia Chen, Magdalena Bazalova-Carter, Siegfried Glenzer, R. Riquier, G. Revet, Patrizio Antici, A. Morabito, M. V. Starodubtsev, A. Propp, Maxence Gauthier, and S. Bolanos
- Subjects
Scanner ,Materials science ,Film Dosimetry ,Orientation (computer vision) ,Calibration curve ,business.industry ,Models, Theoretical ,01 natural sciences ,Grayscale ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Optics ,0103 physical sciences ,Calibration ,RGB color model ,Dosimetry ,010306 general physics ,Optical filter ,business ,Instrumentation - Abstract
Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.
- Published
- 2016
30. Diagnostics of laser-produced plasmas based on the analysis of intensity ratios of He-like ions X-ray emission
- Author
-
S. N., Ryazantsev, I. Yu., Skobelev, A. Ya., Faenov, T. A., Pikuz, D. P., Higginson, S. N., Chen, G., Revet, Béard, Jérome, Portugall, Oliver, A. A., Soloviev, A. N., Grum-Grzhimailo, J., Fuchs, S. A., Pikuz, Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2016
31. X-ray spectroscopy diagnostics on supersonic astrophysically- relevant plasma jets
- Author
-
S. A. Pikuz, E. D. Filippov, S. N. Ryazantsev, I. Yu. Skobelev, G. Revet, D. P. Higginson, S. N. Chen, B. Albertazzi, A. A. Soloviev, J. Beard, B. Khiar, A. Ciardi, A. Ya. Faenov, H. Pepin, and J. Fuchs
- Published
- 2016
- Full Text
- View/download PDF
32. Longitudinal laser ion acceleration in low density targets: experimental optimization on the Titan laser facility and numerical investigation of the ultra-high intensity limit
- Author
-
Vladimir Tikhonchuk, Henri Pépin, Mathieu Bailly-Grandvaux, Mathieu Lobet, A. M. Schroer, Patrizio Antici, Joao Santos, Julien Fuchs, Shihua Chen, T. Gangolf, Emmanuel d'Humières, G. Revet, M. Scisciò, and Oswald Willi
- Subjects
Physics ,Proton ,Plasma ,Electron ,Laser ,Shock (mechanics) ,Ion ,law.invention ,Acceleration ,Physics::Plasma Physics ,law ,Physics::Accelerator Physics ,Laser beam quality ,Atomic physics - Abstract
Recent theoretical and experimental studies suggest the possibility of enhancing the efficiency and ease of laser acceleration of protons and ions using underdense or near critical plasmas through electrostatic shocks. Very promising results were recently obtained in this regime. In these experiments, a first ns pulse was focused on a thin target to explode it and a second laser with a high intensity was focused on the exploded foil. The delay between two lasers allowed to control the density gradient seen by the second laser pulse. The transition between various laser ion acceleration regimes depending on the density gradient length was studied. With a laser energy of a few Joules, protons with energies close to the energies of TNSA accelerated protons were obtained for various exploded foils configurations. In the high energy regime (~180 J), protons with energies significantly higher than the ones of TNSA accelerated protons were obtained when exploding the foil while keeping a good beam quality. These results demonstrate that low-density targets are promising candidates for an efficient proton source that can be optimized by choosing appropriate plasma conditions. New experiments were also performed in this regime with gas jets. Scaling shock acceleration in the low density regime to ultra high intensities is a challenge as radiation losses and electron positron pair production change the optimization of the shock process. Using large-scale Particle-In-Cell simulations, the transition to this regime in which intense beams of relativistic ions can be produced is investigated.
- Published
- 2015
- Full Text
- View/download PDF
33. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
- Author
-
Hans-Peter Schlenvoigt, G. Revet, Marco Borghesi, Martín Huarte-Espinosa, I. Yu. Skobelev, Henri Pépin, K. Naughton, Motoaki Nakatsutsumi, O. Portugall, Andrea Ciardi, J. Béard, T. Herrmannsdörfer, Zakary Burkley, Thomas E. Cowan, Julien Fuchs, S. A. Pikuz, Florian Kroll, Tommaso Vinci, R. Riquier, A. Ya. Faenov, A. A. Soloviev, Rosaria Bonito, Caterina Riconda, L. Romagnani, Adam Frank, Drew Higginson, J. Billette, Bruno Albertazzi, Sophia Chen, Laboratoire pour l'utilisation des lasers intenses (LULI), Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Albertazzi, B., Ciardi, A., Nakatsutsumi, M., Vinci, T., Béard, J., Bonito, R., Billette, J., Borghesi, M., Burkley, Z., Chen, S. N., Cowan, T. E., Herrmannsdörfer, T., Higginson, D. P., Kroll, F., Pikuz, S. A., Naughton, K., Romagnani, L., Riconda, C., Revet, G., Riquier, R., Schlenvoigt, H.-P., Skobelev, I. Yu., Faenov, A. Ya., Soloviev, A., Huarte-Espinosa, M., Frank, A., Portugall, O., Pépin, H., Fuchs, J., École normale supérieure - Paris (ENS Paris), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
- Subjects
jets ,Physics ,Jet (fluid) ,Multidisciplinary ,Shock (fluid dynamics) ,Young stellar object ,Astrophysics::High Energy Astrophysical Phenomena ,Flow (psychology) ,Plasma ,Conical surface ,Astrophysics ,01 natural sciences ,SIMULATIONS ,010305 fluids & plasmas ,Magnetic field ,COLLIMATION ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,DISCOVERY ,0103 physical sciences ,DG-TAURI ,010303 astronomy & astrophysics ,ACCRETION DISCS ,Astrophysics::Galaxy Astrophysics ,DRIVEN JETS - Abstract
International audience; Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154.
- Published
- 2014
- Full Text
- View/download PDF
34. Parameters of supersonic astrophysically-relevant plasma jets collimating via poloidal magnetic field measured by x-ray spectroscopy method
- Author
-
S. N. Ryazantsev, Drew Higginson, Julien Fuchs, E. D. Filippov, Shihua Chen, D. Khaghani, G. Revet, I. Yu. Skobelev, and S. A. Pikuz
- Subjects
Physics ,History ,X-ray spectroscopy ,business.industry ,Plasma ,01 natural sciences ,Collimated light ,010305 fluids & plasmas ,Computer Science Applications ,Education ,Magnetic field ,Optics ,0103 physical sciences ,Supersonic speed ,Atomic physics ,010306 general physics ,business - Published
- 2016
- Full Text
- View/download PDF
35. Energetic beams of negative and neutral hydrogen from intense laser plasma interaction
- Author
-
Peter V. Nickles, Gerd Priebe, F. Abicht, Alexander Andreev, S. Ter-Avetisyan, Marco Borghesi, Vladimir Tikhonchuk, J. Braenzel, M. Schnürer, R. Prasad, G. Revet, and Sophie Jequier
- Subjects
Physics and Astronomy (miscellaneous) ,Hydrogen ,Energetic neutral atom ,Electron capture ,chemistry.chemical_element ,Plasma ,Laser ,Linear particle accelerator ,law.invention ,Ion ,Cross section (physics) ,chemistry ,law ,Physics::Atomic Physics ,Atomic physics - Abstract
We present observations of intense beams of energetic negative hydrogen ions and fast neutral hydrogen atoms in intense (5 × 1019 W/cm2) laser plasma interaction experiments, which were quantified in numerical calculations. Generation of negative ions and neutral atoms is ascribed to the processes of electron capture and loss by a laser accelerated positive ion in the collisions with a cloud of droplets. A comparison with a numerical model of charge exchange processes provides information on the cross section of the electron capture in the high energy domain.
- Published
- 2013
- Full Text
- View/download PDF
36. Laser-plasma experiments on solid-density target heating to high bulk temperatures at PEARL facility
- Author
-
A. V. Korzhimanov, M. V. Starodubtsev, R. R. Osmanov, S. A. Pikuz, Vladislav Ginzburg, A. A. Eremeev, I. Shaykin, Efim A. Khazanov, A. A. Kuzmin, Julien Fuchs, S. N. Chen, Andrey Shaykin, Ivan V. Yakovlev, Alexander Soloviev, A. Sladkov, G. Revet, and K. F. Burdonov
- Subjects
Materials science ,Solid density ,Isochoric process ,media_common.quotation_subject ,Analytical chemistry ,02 engineering and technology ,Plasma ,021001 nanoscience & nanotechnology ,Laser ,01 natural sciences ,Temperature measurement ,law.invention ,010309 optics ,law ,0103 physical sciences ,Contrast (vision) ,0210 nano-technology ,FOIL method ,media_common - Abstract
We show that almost isochoric heating to high temperatures (300 eV) of $\mu $m-thick solid-density foil can be achieved in a compact and efficient manner using an ultrahigh contrast, high-power, ultra-short duration laser.
37. Parameters of supersonic astrophysically-relevant plasma jets collimating via poloidal magnetic field measured by x-ray spectroscopy method.
- Author
-
E D Filippov, S A Pikuz, I Yu Skobelev, S N Ryazantsev, D P Higginson, D Khaghani, G Revet, S N Chen, and J Fuchs
- Published
- 2016
- Full Text
- View/download PDF
38. Bio-functionalized hydrogel patches of chitosan for the functional recovery of infarcted myocardial tissue.
- Author
-
Domengé O, Deloux R, Revet G, Mazière L, Pillet-Michelland E, Commin L, Bonnefont-Rebeix C, Simon A, Mougenot N, Cavagnino A, Baraibar M, Saulnier N, Crépet A, Delair T, Agbulut O, and Montembault A
- Subjects
- Animals, Rats, Male, Myocardium metabolism, Recovery of Function drug effects, Mesenchymal Stem Cells drug effects, Mesenchymal Stem Cells metabolism, Disease Models, Animal, Mice, Chitosan chemistry, Chitosan pharmacology, Myocardial Infarction drug therapy, Hydrogels chemistry, Hydrogels pharmacology
- Abstract
The aim of this work was to assess the potential benefits of the enrichment of a chitosan hydrogel patch with secretome and its epicardial implantation in a murine model of chronic ischemia, focusing on the potential to restore the functional capacity of the heart. Thus, a hydrogel with a final polymer concentration of 3 % was prepared from chitosan with an acetylation degree of 24 % and then bio-functionalized with a secretome produced by mesenchymal stromal cells. The identification of proteins in the secretomes showed the presence of several proteins known to have beneficial effects on cardiac muscle repair. Then chitosan hydrogels were immersed in secretome. The protein incorporation in the hydrogel and their release over time were studied, demonstrating the ability of the gel to retain and then deliver proteins (around 40 % was released in the first 6 h, and then a plateau was reached). Moreover, mechanical analysis exhibited that the patches remained suturable after enrichment. Finally, bio-functionalized hydrogel patches were sutured onto the surface of the infarcted myocardium in rat. Thirty days after, the presence of enriched hydrogels induced a reversion of cardiac function which seems to come mainly from an improvement of left ventricle systolic performance and contractility., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF
39. Generation of human induced pluripotent stem cell lines from five patients with Myofibrillar myopathy carrying different heterozygous mutations in the DES gene.
- Author
-
Joanne P, Hovhannisyan Y, Simon A, Revet G, Diot R, Friob G, Calin D, Li Z, Béhin A, Wahbi K, Tachdjian G, and Agbulut O
- Subjects
- Humans, Leukocytes, Mononuclear, Mutation genetics, Induced Pluripotent Stem Cells, Myopathies, Structural, Congenital genetics
- Abstract
Myofibrillar myopathy (MFM) is a rare genetic disorder characterized by muscular dystrophy that is often associated with cardiac disease. This disease is caused by mutations in several genes, among them DES (encoding desmin) is the most frequently affected. Peripheral blood mononuclear cells from 5 different MFM patients with different DES mutations were reprogrammed into induced pluripotent stem cells (IPSC) using non-integrative vectors. For each patient, one IPSC clone was selected and demonstrated pluripotency hallmarks without genomic abnormalities. SNP profiles were identical to the cells of origin and all the clones have the capacity to differentiate into all three germ layers., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
40. Cyto- and bio-compatibility assessment of plasma-treated polyvinylidene fluoride scaffolds for cardiac tissue engineering.
- Author
-
Kitsara M, Revet G, Vartanian-Grimaldi JS, Simon A, Minguy M, Miche A, Humblot V, Dufour T, and Agbulut O
- Abstract
As part of applications dealing with cardiovascular tissue engineering, drop-cast polyvinylidene fluoride (PVDF) scaffolds have been treated by cold plasma to enhance their adherence to cardiac cells. The scaffolds were treated in a dielectric barrier device where cold plasma was generated in a gaseous environment combining a carrier gas (helium or argon) with/without a reactive gas (molecular nitrogen). We show that an Ar-N
2 plasma treatment of 10 min results in significant hydrophilization of the scaffolds, with contact angles as low as 52.4° instead of 132.2° for native PVDF scaffolds. Correlation between optical emission spectroscopy and X-ray photoelectron spectroscopy shows that OH radicals from the plasma phase can functionalize the surface scaffolds, resulting in improved wettability. For all plasma-treated PVDF scaffolds, the adhesion and maturation of primary cardiomyocytes is increased, showing a well-organized sarcomeric structure (α-actinin immunostaining). The efficacy of plasma treatment was also supported by real-time PCR analysis to demonstrate an increased expression of the genes related to adhesion and cardiomyocyte function. Finally, the biocompatibility of the PVDF scaffolds was studied in a cardiac environment, after implantation of acellular scaffolds on the surface of the heart of healthy mice. Seven and 28 days after implantation, no exuberant fibrosis and no multinucleated giant cells were visible in the grafted area, hence demonstrating the absence of foreign body reaction and the biocompatibility of these scaffolds., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Kitsara, Revet, Vartanian-Grimaldi, Simon, Minguy, Miche, Humblot, Dufour and Agbulut.)- Published
- 2022
- Full Text
- View/download PDF
41. The beneficial effect of chronic muscular exercise on muscle fragility is increased by Prox1 gene transfer in dystrophic mdx muscle.
- Author
-
Monceau A, Delacroix C, Lemaitre M, Revet G, Furling D, Agbulut O, Klein A, and Ferry A
- Subjects
- Animals, Genetic Therapy, Mice, Mice, Inbred C57BL, Mice, Inbred mdx, Muscle Contraction physiology, Muscle, Skeletal physiology, Muscular Dystrophy, Animal genetics, Muscular Dystrophy, Animal metabolism, Muscular Dystrophy, Animal therapy, Muscular Dystrophy, Duchenne genetics, Muscular Dystrophy, Duchenne metabolism, Muscular Dystrophy, Duchenne therapy
- Abstract
Purpose: Greater muscle fragility is thought to cause the exhaustion of the muscle stem cells during successive degeneration/repair cycles, leading to muscle wasting and weakness in Duchenne muscular dystrophy. Chronic voluntary exercise can partially reduce the susceptibility to contraction induced-muscle damage, i.e., muscle fragility, as shown by a reduced immediate maximal force drop following lengthening contractions, in the dystrophic mdx mice. Here, we studied the effect of Prospero-related homeobox factor 1 gene (Prox1) transfer (overexpression) using an AAV on fragility in chronically exercised mdx mice, because Prox1 promotes slower type fibres in healthy mice and slower fibres are less fragile in mdx muscle., Methods: Both tibialis anterior muscles of the same mdx mouse received the transfer of Prox1 and PBS and the mice performed voluntary running into a wheel during 1 month. We also performed Prox1 transfer in sedentary mdx mice. In situ maximal force production of the muscle in response to nerve stimulation was assessed before, during and after 10 lengthening contractions. Molecular muscle parameters were also evaluated., Results: Interestingly, Prox1 transfer reduced the isometric force drop following lengthening contractions in exercised mdx mice (p < 0.05 to 0.01), but not in sedentary mdx mice. It also increased the muscle expression of Myh7 (p < 0.001), MHC-2x (p < 0.01) and Trpc1 (p < 0.01), whereas it reduced that one of Myh4 (p < 0.001) and MHC-2b (p < 0.01) in exercised mdx mice. Moreover, Prox1 transfer decreased the absolute maximal isometric force (p < 0.01), but not the specific maximal isometric force, before lengthening contraction in exercised (p < 0.01) and sedentary mdx mice., Conclusion: Our results indicate that Prox1 transfer increased the beneficial effect of chronic exercise on muscle fragility in mdx mice, but reduced absolute maximal force. Thus, the potential clinical benefit of the transfer of Prox1 into exercised dystrophic muscle can merit further investigation., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
42. Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field.
- Author
-
Filippov ED, Makarov SS, Burdonov KF, Yao W, Revet G, Béard J, Bolaños S, Chen SN, Guediche A, Hare J, Romanovsky D, Skobelev IY, Starodubtsev M, Ciardi A, Pikuz SA, and Fuchs J
- Abstract
We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10[Formula: see text]-10[Formula: see text] W/cm[Formula: see text]) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after [Formula: see text] ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only [Formula: see text] of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.
- Published
- 2021
- Full Text
- View/download PDF
43. Efficacy of epicardial implantation of acellular chitosan hydrogels in ischemic and nonischemic heart failure: impact of the acetylation degree of chitosan.
- Author
-
Domengé O, Ragot H, Deloux R, Crépet A, Revet G, Boitard SE, Simon A, Mougenot N, David L, Delair T, Montembault A, and Agbulut O
- Subjects
- Acetylation, Animals, Hydrogels pharmacology, Mice, Myocardium metabolism, Rats, Chitosan pharmacology, Heart Failure
- Abstract
This work explores the epicardial implantation of acellular chitosan hydrogels in two murine models of cardiomyopathy, focusing on their potential to restore the functional capacity of the heart. Different chitosan hydrogels were generated using polymers of four degrees of acetylation, ranging from 2.5% to 38%, because the degree of acetylation affects their degradation and biological activity. The hydrogels were adjusted to a 3% final polymer concentration. After complete macromolecular characterization of the chitosans and study of the mechanical properties of the resulting hydrogels, they were sutured onto the surface of the myocardium, first in rat after four-weeks of coronary ligation (n=58) then in mice with cardiomyopathy induced by a cardiac-specific invalidation of serum response factor (n=20). The implantation of the hydrogels was associated with a reversion of cardiac function loss with maximal effects for the acetylation degree of 24%. The extent of fibrosis, the cardiomyocyte length-to-width ratio, as well as the genes involved in fibrosis and stress were repressed after implantation. Our study demonstrated the beneficial effects of chitosan hydrogels, particularly with polymers of high degrees of acetylation, on cardiac remodeling in two cardiomyopathy models. Our findings indicate they have great potential as a reliable therapeutic approach to heart failure., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
44. Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate) Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering.
- Author
-
Flaig F, Ragot H, Simon A, Revet G, Kitsara M, Kitasato L, Hébraud A, Agbulut O, and Schlatter G
- Subjects
- Animals, Decanoates, Glycerol analogs & derivatives, Mice, Polyesters, Polymers, Tissue Scaffolds, Elastomers, Tissue Engineering
- Abstract
Many works focus on the use of polyesters such as poly(lactic acid) (PLA) to produce nanofibrous scaffolds for cardiac tissue engineering. However, such scaffolds are hydrophobic and difficult to functionalize. Here, we show that adding 30% of poly(glycerol sebacate) (PGS) elastomer within PLA leads to PLA:PGS scaffolds with improved biological properties, depending on the processing parameters. Two categories of fibers were produced by blend electrospinning, with diameters of 600 and 1300 nm. The resulting fibers were cured at 90 or 120 °C to achieve two different cross-linking densities. The designed scaffolds were considered for cytocompatibility, biocompatibility, biodegradability, and chemical and mechanical properties. Our results demonstrated that the presence of PGS increases the hydrophilicity of the material and thus improves surface functionalization by Matrigel or laminin coating, commonly used cell culture matrices. PLA:PGS scaffolds associated with Matrigel or laminin allow an increased material-cell interaction. Moreover, the cardiomyocytes seeded on such scaffolds acquire a morphology similar to that observed in native tissue, the result being more remarkable on fibers having the smallest diameter and the highest PGS cross-linking density. In addition, these scaffolds induce neovascularization without an inflammatory response and foreign body giant cell response after grafting on a mouse heart. Hence, the improved biocompatibility and the ability to support cardiomyocyte development suggest that thin PLA:PGS scaffolds could be promising biomaterials for cardiac application.
- Published
- 2020
- Full Text
- View/download PDF
45. The response function of Fujifilm BAS-TR imaging plates to laser-accelerated titanium ions.
- Author
-
Strehlow J, Forestier-Colleoni P, McGuffey C, Bailly-Grandvaux M, Daykin TS, McCary E, Peebles J, Revet G, Zhang S, Ditmire T, Donovan M, Dyer G, Fuchs J, Gaul EW, Higginson DP, Kemp GE, Martinez M, McLean HS, Spinks M, Sawada H, and Beg FN
- Abstract
Calibrated diagnostics for energetic particle detection allow for the systematic study of charged particle sources. The Fujifilm BAS-TR imaging plate (IP) is a reusable phosphorescent detector for radiation applications such as x-ray and particle beam detection. The BAS-TR IP has been absolutely calibrated to many low-Z (low proton number) ions, and extending these calibrations to the mid-Z regime is beneficial for the study of laser-driven ion sources. The Texas Petawatt Laser was used to generate energetic ions from a 100 nm titanium foil, and charge states Ti
10+ through Ti12+ , ranging from 6 to 27 MeV, were analyzed for calibration. A plastic detector of CR-39 with evenly placed slots was mounted in front of the IP to count the number of ions that correspond with the IP levels of photo-stimulated luminescence (PSL). A response curve was fitted to the data, yielding a model of the PSL signal vs ion energy. Comparisons to other published response curves are also presented, illustrating the trend of PSL/nucleon decreasing with increasing ion mass.- Published
- 2019
- Full Text
- View/download PDF
46. Enhancement of Quasistationary Shocks and Heating via Temporal Staging in a Magnetized Laser-Plasma Jet.
- Author
-
Higginson DP, Khiar B, Revet G, Béard J, Blecher M, Borghesi M, Burdonov K, Chen SN, Filippov E, Khaghani D, Naughton K, Pépin H, Pikuz S, Portugall O, Riconda C, Riquier R, Rodriguez R, Ryazantsev SN, Skobelev IY, Soloviev A, Starodubtsev M, Vinci T, Willi O, Ciardi A, and Fuchs J
- Abstract
We investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10^{12} W/cm^{2}) and, then, a main pulse (10^{13} W/cm^{2}) arriving 9-19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.
- Published
- 2017
- Full Text
- View/download PDF
47. Laboratory unraveling of matter accretion in young stars.
- Author
-
Revet G, Chen SN, Bonito R, Khiar B, Filippov E, Argiroffi C, Higginson DP, Orlando S, Béard J, Blecher M, Borghesi M, Burdonov K, Khaghani D, Naughton K, Pépin H, Portugall O, Riquier R, Rodriguez R, Ryazantsev SN, Yu Skobelev I, Soloviev A, Willi O, Pikuz S, Ciardi A, and Fuchs J
- Abstract
Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.
- Published
- 2017
- Full Text
- View/download PDF
48. Experimental evidence for short-pulse laser heating of solid-density target to high bulk temperatures.
- Author
-
Soloviev A, Burdonov K, Chen SN, Eremeev A, Korzhimanov A, Pokrovskiy GV, Pikuz TA, Revet G, Sladkov A, Ginzburg V, Khazanov E, Kuzmin A, Osmanov R, Shaikin I, Shaykin A, Yakovlev I, Pikuz S, Starodubtsev M, and Fuchs J
- Abstract
Heating efficiently solid-density, or even compressed, matter has been a long-sought goal in order to allow investigation of the properties of such state of matter of interest for various domains, e.g. astrophysics. High-power lasers, pinches, and more recently Free-Electron-Lasers (FELs) have been used in this respect. Here we show that by using the high-power, high-contrast "PEARL" laser (Institute of Applied Physics-Russian Academy of Science, Nizhny Novgorod, Russia) delivering 7.5 J in a 60 fs laser pulse, such coupling can be efficiently obtained, resulting in heating of a slab of solid-density Al of 0.8 µm thickness at a temperature of 300 eV, and with minimal density gradients. The characterization of the target heating is achieved combining X-ray spectrometry and measurement of the protons accelerated from the Al slab. The measured heating conditions are consistent with a three-temperatures model that simulates resistive and collisional heating of the bulk induced by the hot electrons. Such effective laser energy deposition is achieved owing to the intrinsic high contrast of the laser which results from the Optical Parametric Chirped Pulse Amplification technology it is based on, allowing to attain high target temperatures in a very compact manner, e.g. in comparison with large-scale FEL facilities.
- Published
- 2017
- Full Text
- View/download PDF
49. Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability.
- Author
-
Chen SN, Gauthier M, Bazalova-Carter M, Bolanos S, Glenzer S, Riquier R, Revet G, Antici P, Morabito A, Propp A, Starodubtsev M, and Fuchs J
- Subjects
- Calibration, Film Dosimetry standards, Film Dosimetry instrumentation, Film Dosimetry methods, Models, Theoretical
- Abstract
Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSON V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.
- Published
- 2016
- Full Text
- View/download PDF
50. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field.
- Author
-
Albertazzi B, Ciardi A, Nakatsutsumi M, Vinci T, Béard J, Bonito R, Billette J, Borghesi M, Burkley Z, Chen SN, Cowan TE, Herrmannsdörfer T, Higginson DP, Kroll F, Pikuz SA, Naughton K, Romagnani L, Riconda C, Revet G, Riquier R, Schlenvoigt HP, Skobelev IY, Faenov AY, Soloviev A, Huarte-Espinosa M, Frank A, Portugall O, Pépin H, and Fuchs J
- Abstract
Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154., (Copyright © 2014, American Association for the Advancement of Science.)
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.