Back to Search Start Over

Laboratory evidence for proton energization by collisionless shock surfing

Authors :
G. Revet
K. Burdonov
J. Béard
A. Fazzini
E. D. Filippov
S. Bolaños
Julien Fuchs
V. Lelasseux
S. A. Pikuz
D. C. Popescu
Salvatore Orlando
W. P. Yao
V. Nastasa
Patrizio Antici
Andrea Ciardi
S. Kisyov
Quentin Moreno
Marco Miceli
Xavier Ribeyre
Emmanuel d'Humières
R. Diab
Sophia Chen
Laboratoire pour l'utilisation des lasers intenses (LULI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Centre d'Etudes Lasers Intenses et Applications (CELIA)
Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
ITA
FRA
CAN
CZE
ROU
RUS
Yao W.
Fazzini A.
Chen S.N.
Burdonov K.
Antici P.
Beard J.
Bolanos S.
Ciardi A.
Diab R.
Filippov E.D.
Kisyov S.
Lelasseux V.
Miceli M.
Moreno Q.
Nastasa V.
Orlando S.
Pikuz S.
Popescu D.C.
Revet G.
Ribeyre X.
d'Humieres E.
Fuchs J.
Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112))
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB)
Source :
Nature Physics, Nature Physics, 2021, 17 (10), pp.1177-1182. ⟨10.1038/s41567-021-01325-w⟩, Nature Phys., Nature Phys., 2021, 17 (10), pp.1177-1182. ⟨10.1038/s41567-021-01325-w⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticality in the shock profile as well as the energization of protons picked up from the ambient gas to hundreds of kiloelectronvolts. Kinetic simulations modelling the laboratory experiment identified shock surfing as the proton acceleration mechanism. Our observations not only provide direct evidence of early-stage ion energization by collisionless shocks but also highlight the role played by this particular mechanism in energizing ambient ions to feed further stages of acceleration. Furthermore, our results open the door to future laboratory experiments investigating the possible transition to other mechanisms, when increasing the magnetic field strength, or the effect that induced shock front ripples could have on acceleration processes. Proton acceleration by a super-critical collisionless shock is observed in laboratory experiments, and numerical simulations suggest shock surfing as the underlying acceleration mechanism.

Details

Language :
English
ISSN :
17452473 and 14764636
Database :
OpenAIRE
Journal :
Nature Physics, Nature Physics, 2021, 17 (10), pp.1177-1182. ⟨10.1038/s41567-021-01325-w⟩, Nature Phys., Nature Phys., 2021, 17 (10), pp.1177-1182. ⟨10.1038/s41567-021-01325-w⟩
Accession number :
edsair.doi.dedup.....51e0218083b70a59ac397b1c3182c748