Back to Search Start Over

Highly-collimated, high-charge and broadband MeV electron beams produced by magnetizing solids irradiated by high-intensity lasers

Authors :
G. Revet
M. Safronova
Oswald Willi
Mirela Cerchez
J. Béard
Sophia Chen
Julien Fuchs
M. V. Starodubtsev
E. D. Filippov
S. A. Pikuz
S. Bolanos
Laboratoire pour l'utilisation des lasers intenses (LULI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institute of Applied Physics of RAS
Russian Academy of Sciences [Moscow] (RAS)
Horia Hulubei National Institute of Physics and Nuclear Engineering (NIPNE)
IFIN-HH
Joint Institute for High Temperatures of the RAS (JIHT)
The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia]
Heinrich Heine Universität Düsseldorf = Heinrich Heine University [Düsseldorf]
ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011)
ANR-17-CE30-0026,PiNNaCLE,Développement d'une ligne de neutrons pulsés compacte et de haute brillance(2017)
European Project: 654148,H2020,H2020-INFRAIA-2014-2015,LASERLAB-EUROPE(2015)
European Project: ERC787539,GENESIS
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
National Research Nuclear University MEPhI
Source :
Matter and Radiation at Extremes, Matter and Radiation at Extremes, 2019, 4 (4), pp.044401. ⟨10.1063/1.5082330⟩, Matter and Radiation at Extremes, AIP Publishing 2019, 4 (4), pp.044401. ⟨10.1063/1.5082330⟩, Matter and Radiation at Extremes, Vol 4, Iss 4, Pp 044401-044401-8 (2019)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients. However, for a long time, this technique was not considered a viable means of electron acceleration due to the large intrinsic divergence (∼50° half-angle) of the electrons. Recently, a reduction in this divergence to 10°–20° half-angle has been obtained, using plasma-based magnetic fields or very high contrast laser pulses to extract the electrons into the vacuum. Here we show that we can further improve the electron beam collimation, down to ∼1.5° half-angle, of a high-charge (6 nC) beam, and in a highly reproducible manner, while using standard stand-alone 100 TW-class laser pulses. This is obtained by embedding the laser-target interaction in an external, large-scale (cm), homogeneous, extremely stable, and high-strength (20 T) magnetic field that is independent of the laser. With upcoming multi-PW, high repetition-rate lasers, this technique opens the door to achieving even higher charges (>100 nC).Laser irradiation of solid targets can drive short and high-charge relativistic electron bunches over micron-scale acceleration gradients. However, for a long time, this technique was not considered a viable means of electron acceleration due to the large intrinsic divergence (∼50° half-angle) of the electrons. Recently, a reduction in this divergence to 10°–20° half-angle has been obtained, using plasma-based magnetic fields or very high contrast laser pulses to extract the electrons into the vacuum. Here we show that we can further improve the electron beam collimation, down to ∼1.5° half-angle, of a high-charge (6 nC) beam, and in a highly reproducible manner, while using standard stand-alone 100 TW-class laser pulses. This is obtained by embedding the laser-target interaction in an external, large-scale (cm), homogeneous, extremely stable, and high-strength (20 T) magnetic field that is independent of t...

Details

Language :
English
ISSN :
2468080X
Database :
OpenAIRE
Journal :
Matter and Radiation at Extremes, Matter and Radiation at Extremes, 2019, 4 (4), pp.044401. ⟨10.1063/1.5082330⟩, Matter and Radiation at Extremes, AIP Publishing 2019, 4 (4), pp.044401. ⟨10.1063/1.5082330⟩, Matter and Radiation at Extremes, Vol 4, Iss 4, Pp 044401-044401-8 (2019)
Accession number :
edsair.doi.dedup.....ca83066e0e4f14f5c7805c720f53fa35