36 results on '"Fjaeldstad, Alexander W"'
Search Results
2. More than smell – COVID-19 is associated with severe impairment of smell, taste, and chemesthesis
- Author
-
Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Domínguez, Paloma Rohlfs, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, KL, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie DC, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William EA, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D’Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper HB, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, Hayes, John E, Abdulrahman, Olagunju, Dalton, Pamela, Yan, Carol H, Voznessenskaya, Vera V, Chen, Jingguo, Sell, Elizabeth A, and Walsh-Messinger, Julie
- Subjects
Neurosciences ,Dental/Oral and Craniofacial Disease ,Clinical Research ,Adult ,Aged ,Betacoronavirus ,COVID-19 ,Coronavirus Infections ,Female ,Humans ,Male ,Middle Aged ,Olfaction Disorders ,Pandemics ,Pneumonia ,Viral ,SARS-CoV-2 ,Self Report ,Smell ,Somatosensory Disorders ,Surveys and Questionnaires ,Taste ,Taste Disorders ,Young Adult ,head and neck surgery ,olfaction ,somatosensation ,GCCR Group Author ,Biological Sciences ,Neurology & Neurosurgery - Abstract
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
- Published
- 2020
3. Is perceptual learning generalisable in the chemical senses? A longitudinal pilot study based on a naturalistic blind wine tasting training scenario
- Author
-
Wang, Qian Janice, Fernandes, Henrique M., and Fjaeldstad, Alexander W.
- Published
- 2021
- Full Text
- View/download PDF
4. International clinical assessment of smell: An international, cross‐sectional survey of current practice in the assessment of olfaction.
- Author
-
Whitcroft, Katherine L., Alobid, Isam, Altundag, Aytug, Andrews, Peter, Carrie, Sean, Fahmy, Miriam, Fjældstad, Alexander W., Gane, Simon, Hopkins, Claire, Hsieh, Julien Wen, Huart, Caroline, Hummel, Thomas, Konstantinidis, Iordanis, Landis, Baslie N., Mori, Eri, Mullol, Joaquim, Philpott, Carl, Poulios, Aristotelis, Vodička, Jan, and Ward, Victoria M.
- Subjects
PATIENT reported outcome measures ,OLFACTOMETRY ,SMELL ,SMELL disorders ,NONPROBABILITY sampling - Abstract
Objectives: Olfactory dysfunction (OD) is common and carries significant personal and societal burden. Accurate assessment is necessary for good clinical and research practice but is highly dependent on the assessment technique used. Current practice with regards to UK/international clinical assessment is unknown. We aimed to capture current clinical practice, with reference to contemporaneously available guidelines. We further aimed to compare UK to international practice. Design: Anonymous online questionnaire with cross‐sectional non‐probability sampling. Subgroup analysis according to subspeciality training in rhinology ('rhinologists' and 'non‐rhinologists') was performed, with geographical comparisons only made according to subgroup. Participants: ENT surgeons who assess olfaction. Results: Responses were received from 465 clinicians (217 from UK and 17 countries total). Country‐specific response rate varied, with the lowest rate being obtained from Japan (1.4%) and highest from Greece (72.5%). Most UK clinicians do not perform psychophysical smell testing during any of the presented clinical scenarios—though rhinologists did so more often than non‐rhinologists. The most frequent barriers to testing related to service provision (e.g., time/funding limitations). Whilst there was variability in practice, in general, international respondents performed psychophysical testing more frequently than those from the UK. Approximately 3/4 of all respondents said they would like to receive training in psychophysical smell testing. Patient reported outcome measures were infrequently used in the UK/internationally. More UK respondents performed diagnostic MRI scanning than international respondents. Conclusions: To our knowledge, this is the most comprehensive UK‐based, and only international survey of clinical practice in the assessment of OD. We present recommendations to improve practice, including increased education and funding for psychophysical smell testing. We hope this will promote accurate and reliable olfactory assessment, as is the accepted standard in other sensory systems. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Covid-19 affects taste independent of taste-smell confusions : Results from a combined chemosensory home test and online survey from a large global cohort
- Author
-
Nguyen, Ha, Albayay, Javier, Höchenberger, Richard, Bhutani, Surabhi, Boesveldt, Sanne, Busch, Niko A., Croijmans, Ilja, Cooper, Keiland W., De Groot, Jasper H.B., Farruggia, Michael C., Fjaeldstad, Alexander W., Hayes, John E., Hummel, Thomas, Joseph, Paule V., Laktionova, Tatiana K., Thomas-Danguin, Thierry, Veldhuizen, Maria G., Voznessenskaya, Vera V., Parma, Valentina, Pepino, M.Y., Ohla, Kathrin, Nguyen, Ha, Albayay, Javier, Höchenberger, Richard, Bhutani, Surabhi, Boesveldt, Sanne, Busch, Niko A., Croijmans, Ilja, Cooper, Keiland W., De Groot, Jasper H.B., Farruggia, Michael C., Fjaeldstad, Alexander W., Hayes, John E., Hummel, Thomas, Joseph, Paule V., Laktionova, Tatiana K., Thomas-Danguin, Thierry, Veldhuizen, Maria G., Voznessenskaya, Vera V., Parma, Valentina, Pepino, M.Y., and Ohla, Kathrin
- Abstract
People often confuse smell loss with taste loss, so it is unclear how much gustatory function is reduced in patients self-reporting taste loss. Our pre-registered cross-sectional study design included an online survey in 12 languages with instructions for self-Administering chemosensory tests with 10 household items. Between June 2020 and March 2021, 10,953 individuals participated. Of these, 5,225 self-reported a respiratory illness and were grouped based on their reported COVID test results: COVID-positive (COVID+, N = 3,356), COVID-negative (COVID-, N = 602), and COVID unknown for those waiting for a test result (COVID?, N = 1,267). The participants who reported no respiratory illness were grouped by symptoms: sudden smell/taste changes (STC, N = 4,445), other symptoms excluding smell or taste changes (OthS, N = 832), and no symptoms (NoS, N = 416). Taste, smell, and oral irritation intensities and self-Assessed abilities were rated on visual analog scales. Compared to the NoS group, COVID+ was associated with a 21% reduction in taste (95% confidence interval (CI): 15-28%), 47% in smell (95% CI: 37-56%), and 17% in oral irritation (95% CI: 10-25%) intensity. There were medium to strong correlations between perceived intensities and self-reported abilities (r = 0.84 for smell, r = 0.68 for taste, and r = 0.37 for oral irritation). Our study demonstrates that COVID-19-positive individuals report taste dysfunction when self-Tested with stimuli that have little to none olfactory components. Assessing the smell and taste intensity of household items is a promising, cost-effective screening tool that complements self-reports and may help to disentangle taste loss from smell loss. However, it does not replace standardized validated psychophysical tests.
- Published
- 2023
6. Covid-19 affects taste independently of smell: results from a combined chemosensory home test and online survey from a global cohort (N=10,953)
- Author
-
Nguyen, Ha, primary, Albayay, Javier, additional, Höchenberger, Richard, additional, Bhutani, Surabhi, additional, Boesveldt, Sanne, additional, Busch, Niko A., additional, Croijmans, Ilja, additional, Cooper, Keiland W., additional, de Groot, Jasper H. B., additional, Farruggia, Michael C., additional, Fjaeldstad, Alexander W., additional, Hayes, John E., additional, Hummel, Thomas, additional, Joseph, Paule V., additional, Laktionova, Tatiana K., additional, Thomas-Danguin, Thierry, additional, Veldhuizen, Maria G., additional, Voznessenskaya, Vera V., additional, Parma, Valentina, additional, Pepino, M. Yanina, additional, and Ohla, Kathrin, additional
- Published
- 2023
- Full Text
- View/download PDF
7. Covid-19 affects taste independent of taste–smell confusions: results from a combined chemosensory home test and online survey from a large global cohort
- Author
-
Nguyen, Ha, primary, Albayay, Javier, additional, Höchenberger, Richard, additional, Bhutani, Surabhi, additional, Boesveldt, Sanne, additional, Busch, Niko A, additional, Croijmans, Ilja, additional, Cooper, Keiland W, additional, de Groot, Jasper H B, additional, Farruggia, Michael C, additional, Fjaeldstad, Alexander W, additional, Hayes, John E, additional, Hummel, Thomas, additional, Joseph, Paule V, additional, Laktionova, Tatiana K, additional, Thomas-Danguin, Thierry, additional, Veldhuizen, Maria G, additional, Voznessenskaya, Vera V, additional, Parma, Valentina, additional, Pepino, M Yanina, additional, and Ohla, Kathrin, additional
- Published
- 2023
- Full Text
- View/download PDF
8. The association between halitosis and chemosensory disorders: A systematic review.
- Author
-
Schertel Cassiano, Luisa, Leite, Fábio R.M., López, Rodrigo, Fjaeldstad, Alexander W., and Nascimento, Gustavo G.
- Subjects
ONLINE information services ,AGEUSIA ,MEDICAL information storage & retrieval systems ,SYSTEMATIC reviews ,PERIODONTITIS ,RISK assessment ,BAD breath ,SMELL disorders ,RESEARCH funding ,DESCRIPTIVE statistics ,MEDLINE ,DISEASE risk factors - Abstract
The article presents the discussion on senses of taste and smell influencing one's breath self-perception. Topics include observational studies and clinical trials assessing halitosis in association with chemosensory disorders; and sensory assessment, otolaryngology examination, and selfreported being used for assessing taste alterations.
- Published
- 2023
- Full Text
- View/download PDF
9. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges
- Author
-
Veldhuizen, Maria G., primary, Cecchetto, Cinzia, additional, Fjaeldstad, Alexander W., additional, Farruggia, Michael C., additional, Hartig, Renée, additional, Nakamura, Yuko, additional, Pellegrino, Robert, additional, Yeung, Andy W. K., additional, and Fischmeister, Florian Ph. S., additional
- Published
- 2022
- Full Text
- View/download PDF
10. Mere end lugtesans - COVID-19 er associeret med svær påvirkning af lugtesansen, smagssansen og mundfølelsen
- Author
-
Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, Katherine L, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie D C, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E A, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D’Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper H B, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, Abdulrahman, Olagunju, Dalton, Pamela, Yan, Carol H, Voznessenskaya, Vera V, Chen, Jingguo, Sell, Elizabeth A, Walsh-Messinger, Julie, Archer, Nicholas S, Koyama, Sachiko, Deary, Vincent, Roberts, S Craig, Yanık, Hüseyin, Albayrak, Samet, Nováková, Lenka Martinec, Croijmans, Ilja, Mazal, Patricia Portillo, Moein, Shima T, Margulis, Eitan, Mignot, Coralie, Mariño, Sajidxa, Georgiev, Dejan, Kaushik, Pavan K, Malnic, Bettina, Wang, Hong, Seyed-Allaei, Shima, Yoluk, Nur, Razzaghi-Asl, Sara, Justice, Jeb M, Restrepo, Diego, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, Hayes, John E, Indústries Alimentàries, Qualitat i Tecnologia Alimentària, Tecnologia Alimentària, Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, Mersin University, The Hebrew University of Jerusalem (HUJ), AbScent, Pennsylvania State University (Penn State), Penn State System, University of California [Irvine] (UC Irvine), University of California (UC), Université Côte d'Azur (UCA), University of Edinburgh, Università degli studi di Bari Aldo Moro = University of Bari Aldo Moro (UNIBA), Central Scientific Instruments Organisation (CSIR), Università degli Studi 'Magna Graecia' di Catanzaro = University of Catanzaro (UMG), University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Medizinische Universität Wien = Medical University of Vienna, Groupement scientifique de Biologie et de Medecine Spatiale (GSBMS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES), Tata Institute for Fundamental Research (TIFR), Arizona State University [Tempe] (ASU), Universidad de Extremadura - University of Extremadura (UEX), Università degli Studi di Padova = University of Padua (Unipd), Yale School of Medicine [New Haven, Connecticut] (YSM), San Diego State University (SDSU), Aarhus University [Aarhus], University of Hertfordshire [Hatfield] (UH), Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), Neurosciences Sensorielles Comportement Cognition, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, University of Turku, Aristotle University of Thessaloniki, Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Monell Chemical Senses Center, Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), Université de Montréal (UdeM), Wageningen University and Research Centre (WUR), Medical Science University, Sidra Medicine [Doha, Qatar], Institut de Chimie de Nice (ICN), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), University of Southern Queensland (USQ), Institut de Recerca i Tecnologia Agroalimentàries = Institute of Agrifood Research and Technology (IRTA), DreamAir Llc, Charles University [Prague] (CU), Anthropologie Moléculaire et Imagerie de Synthèse (AMIS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), University of Massachusetts System (UMASS), Oregon State University (OSU), Ear Institute, UCL, Lyon Neuroscience Research center, Karunya University, Biruni University, Assi Sette Llaghi Varese, Stanford School of Medicine [Stanford], Stanford Medicine, Stanford University-Stanford University, University of East Anglia [Norwich] (UEA), California Department of Food and Agriculture (CDFA), Unité mixte de recherche interactions plantes-microorganismes, Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Maastricht University [Maastricht], Institute for Biology - Neurobiology, Freie Universität Berlin, Karl-Franzens-Universität Graz, Howard University College of Medicine, Towson University, University of California [San Diego] (UC San Diego), Proteomics, Center for Applied Medical Research (CIMA), Stockholm University, University of Gastronomic Sciences, Iran University of Medical Sciences, Goethe Universität Frankfurt, University of Tennessee, IBM T.J. Watson Research Center, Université libre de Bruxelles (ULB), Guangzhou Medical University, Buenos Aires University and GEOG (Grupo de Estudio de Olfato y Gusto), Sultan Qaboos University (SQU), Federal University of Technology of Akure (FUTA), A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences [Moscow] (RAS), Hospital of Xi'an Jiaotong University, University of Pennsylvania, University of Dayton, CSIRO Agriculture and Food (CSIRO), Indiana University [Bloomington], Indiana University System, University of Northumbria at Newcastle [United Kingdom], University of Stirling, Middle East Technical University [Ankara] (METU), Utrecht University [Utrecht], Instituto Universitario del Hospital Italiano [Buenos Aires, Argentina], Institute for Research in Fundamental Sciences [Tehran] (IPM), Hebrew University of Jerusalem, Technische Universität Dresden = Dresden University of Technology (TU Dresden), Terrazas del Club Hipico, University Medical Centre Ljubljana [Ljubljana, Slovenia] (UMCL), Tata Institute of Fundamental Research [Bangalore], Universidade de São Paulo = University of São Paulo (USP), University of Florida [Gainesville] (UF), University of Colorado Anschutz [Aurora], Center for Smell and Taste, Department of Food Science, Pennsylvania State University., Julien, Sabine, Tıp Fakültesi, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Department of Food and Nutrition, Senses and Food, Research Center Jülich, University of California [Irvine] (UCI), University of California, Università degli studi di Bari Aldo Moro (UNIBA), Università degli Studi 'Magna Graecia' di Catanzaro [Catanzaro, Italie] (UMG), University of Extremadura, University of Padova, Yale University School of Medicine, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, University of Helsinki, Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Institute of Agrifood Research and Technology (IRTA), Universita degli Studi di Padova, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Karl-Franzens-Universität [Graz, Autriche], University of California San Diego Health, University of Brussels, University of Pennsylvania [Philadelphia], Tata Institute of Fundamental Research, University of São Paulo (USP), UCL - SSS/IONS - Institute of NeuroScience, FSE Campus Venlo, and RS: FSE UCV
- Subjects
Male ,Taste ,Physiology ,Smagstab ,Audiology ,AcademicSubjects/SCI01180 ,Settore BIO/09 - Fisiologia ,Behavioral Neuroscience ,chemistry.chemical_compound ,Olfaction Disorders ,Taste Disorders ,0302 clinical medicine ,RATINGS ,Hyposmia ,Surveys and Questionnaires ,CHEMOSENSITIVITY ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Viral ,PALADAR ,030223 otorhinolaryngology ,Sensory Science and Eating Behaviour ,media_common ,TASTE ,US NATIONAL-HEALTH ,[SDV.IDA] Life Sciences [q-bio]/Food engineering ,Middle Aged ,Biological Sciences ,16. Peace & justice ,Sensory Systems ,3. Good health ,Smell ,GCCR Group Author ,ddc:540 ,Smell loss ,Female ,Original Article ,medicine.symptom ,Corrigendum ,Coronavirus Infections ,olfaction ,Adult ,somatosensation ,medicine.medical_specialty ,663/664 ,Coronavirus disease 2019 (COVID-19) ,OLFACTORY DISORDERS ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,media_common.quotation_subject ,Pneumonia, Viral ,head and neck surgery ,Aged ,Betacoronavirus ,COVID-19 ,Humans ,Pandemics ,SARS-CoV-2 ,Self Report ,Somatosensory Disorders ,Young Adult ,Anosmia ,Sensory system ,Olfaction ,03 medical and health sciences ,Chemesthesis ,Physiology (medical) ,Perception ,medicine ,Neurology & Neurosurgery ,Behaviour Change and Well-being ,business.industry ,R-PACKAGE ,3112 Neurosciences ,Pneumonia ,Parosmia ,COMPONENT ,Smagssans ,[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition ,Sensoriek en eetgedrag ,chemistry ,Lugtetab ,business ,[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition ,030217 neurology & neurosurgery ,Lugtesans - Abstract
Correction: Chemical Senses, Volume 46, 2021, bjab050, https://doi.org/10.1093/chemse/bjab050 Published: 08 December 2021 Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
- Published
- 2020
11. The Association Between Smoking on Olfactory Dysfunction in 3,900 Patients With Olfactory Loss
- Author
-
Fjaeldstad, Alexander W, Ovesen, Therese, and Hummel, Thomas
- Subjects
Flavour ,rygning ,Lugtesans - Abstract
OBJECTIVES/HYPOTHESIS: The association between smoking and olfactory loss remains a conundrum. Prior studies have found negative and positive effects of smoking on olfactory function in the general population. However, smoking cessation seems to improve both rated and measured olfactory function. The purpose of this study was to investigate the olfactory function and smoking habits in patients with olfactory loss caused by different etiologies to unveil underlying patterns related to smoking.STUDY DESIGN: Retrospective observational study.METHODS: Patients were included from two specialized taste and smell centers. Patients underwent olfactory testing, clinical examination including rhinoscopy, and the underlying etiology was identified. Patterns of olfactory test scores, demographics, and etiologies were analyzed.RESULTS: In total, 3,900 patients with olfactory loss were included. Of these, 521 were current smokers, and 316 were former smokers. Patients with a history of smoking did not have significantly lower olfactory function. Current smokers were more often affected by posttraumatic olfactory loss, but not sinonasal, postviral, or idiopathic olfactory loss.CONCLUSIONS: Current smoking, but not former smoking, was associated with posttraumatic olfactory loss. In relation to measured olfactory function, a history of smoking was not associated to lower olfactory scores. Our findings suggest that the general recommendations of smoking cessation for patients with olfactory loss are especially relevant for patients with posttraumatic olfactory loss. The nature of this association between current smoking and posttraumatic olfactory loss has yet to be elucidated.LEVEL OF EVIDENCE: 2b Laryngoscope, 2020.
- Published
- 2021
12. Corrigendum to: More than smell: COVID-19 is associated with severe impairment of smell, taste, and chemesthesis
- Author
-
Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G., Niv, Masha Y., Kelly, Christine E., Bakke, Alyssa J., Cooper, Keiland W., Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y., Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B., Gerkin, Richard C., Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C., Bhutani, Surabhi, Fjaeldstad, Alexander W., Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R., Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A., Lim, Juyun, Whitcroft, Katherine L., Colquitt, Lauren R., Ferdenzi, Camille, Brindha, Evelyn V., Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M., Fiorucci, Sébastien, Philpott, Carl M., Smith, Barry C., Lundström, Johan N., Mucignat, Carla, Parker, Jane K., Van Den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S., Heinbockel, Thomas, Shields, Vonnie D.C., Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E.A., Morini, Gabriella, Olofsson, Jonas K., Jalessi, Maryam, Karni, Noam, D'Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M., Alwashahi, Mohammed K., Welge-Lüssen, Antje, Freiherr, Jessica, De Groot, Jasper H.B., Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W., Abdulrahman, Olagunju, Dalton, Pamela, Yan, Carol H., Voznessenskaya, Vera V., Chen, Jingguo, Sell, Elizabeth A., Walsh-Messinger, Julie, Archer, Nicholas S., Koyama, Sachiko, Deary, Vincent, Roberts, S.C., Yanlk, Hüseyin, Albayrak, Samet, Nováková, Lenka Martinec, Croijmans, Ilja, Mazal, Patricia Portillo, Moein, Shima T., Margulis, Eitan, Mignot, Coralie, Mariño, Sajidxa, Georgiev, Dejan, Kaushik, Pavan K., Malnic, Bettina, Wang, Hong, Seyed-Allaei, Shima, Yoluk, Nur, Razzaghi-Asl, Sara, Justice, Jeb M., Restrepo, Diego, Reed, Danielle R., Hummel, Thomas, Munger, Steven D., Hayes, John E., UCL - SSS/IONS - Institute of NeuroScience, UCL - SSS/IONS/NEUR - Clinical Neuroscience, and UCL - (SLuc) Service d'oto-rhino-laryngologie
- Subjects
Behavioral Neuroscience ,Sensoriek en eetgedrag ,Behaviour Change and Well-being ,Physiology ,Physiology (medical) ,ddc:540 ,Life Science ,Sensory Systems ,Sensory Science and Eating Behaviour ,VLAG - Abstract
This is a correction notice for article bjaa041 (DOI: https:// doi.org/10.1093/chemse/bjaa041), published 20 June 2020. An incorrect version of the caption to Figure 5 was mistakenly included in the published paper. An updated version is given below. Neither the data nor the paper's conclusions were affected by this correction. The authors sincerely apologize for the error. (A) Correlations between the 3 principal components with respect to changes in 3 chemosensory modalities (i.e., taste, smell, and chemesthesis). Shades of gray indicate positive correlation, whereas shades of red indicate negative correlations. White denotes no correlation. (B) Clusters of participants identified by k-means clustering. The scatterplot shows each participant's loading on dimension 1 (degree of smell and taste loss, PC1 on x-Axis) and dimension 2 (degree of chemesthesis loss, PC2 on y-Axis). Based on the centroid of each cluster, participants in cluster 1 (blue, N = 1767; top left) are generally characterized by significant smell, taste and chemesthesis loss. Participants in cluster 2 (orange, N = 1724; bottom center) are generally characterized by ratings that reflect smell/taste loss with preserved chemesthesis. Loadings for participants in cluster 3 (green, N = 548; right side) are generally characterized by reduced smell and taste loss, and preserved chemesthesis.
- Published
- 2021
13. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms.
- Author
-
UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria G, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, Mehmet Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Dar Hwang, Liang, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian Ph S, Heinbockel, Thomas, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Denis, Shields, Vonnie D C, Voznessenskaya, Vera V, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan N, Macchi, Alberto, Meyer, Pablo, Moein, Shima T, Santamaría, Enrique, Sengupta, Debarka, Rohlfs Dominguez, Paloma, Yanik, Hüseyin, Hummel, Thomas, Hayes, John E, Reed, Danielle R, Niv, Masha Y, Munger, Steven D, Parma, Valentina, GCCR Group Author, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria G, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, Mehmet Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Dar Hwang, Liang, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian Ph S, Heinbockel, Thomas, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Denis, Shields, Vonnie D C, Voznessenskaya, Vera V, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan N, Macchi, Alberto, Meyer, Pablo, Moein, Shima T, Santamaría, Enrique, Sengupta, Debarka, Rohlfs Dominguez, Paloma, Yanik, Hüseyin, Hummel, Thomas, Hayes, John E, Reed, Danielle R, Niv, Masha Y, Munger, Steven D, Parma, Valentina, and GCCR Group Author
- Abstract
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
- Published
- 2021
14. Systemic corticosteroids in coronavirus disease 2019 (COVID-19)-related smell dysfunction: an international view.
- Author
-
UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Huart, Caroline, Philpott, Carl M, Altundag, Aytug, Fjaeldstad, Alexander W, Frasnelli, Johannes, Gane, Simon, Hsieh, Julien W, Holbrook, Eric H, Konstantinidis, Iordanis, Landis, Basile N, Macchi, Alberto, Mueller, Christian A, Negoias, Simona, Pinto, Jayant M, Poletti, Sophia C, Ramakrishnan, Vijay R, Rombaux, Philippe, Vodicka, Jan, Welge-Lüessen, Antje, Whitcroft, Katherine L, Hummel, Thomas, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Huart, Caroline, Philpott, Carl M, Altundag, Aytug, Fjaeldstad, Alexander W, Frasnelli, Johannes, Gane, Simon, Hsieh, Julien W, Holbrook, Eric H, Konstantinidis, Iordanis, Landis, Basile N, Macchi, Alberto, Mueller, Christian A, Negoias, Simona, Pinto, Jayant M, Poletti, Sophia C, Ramakrishnan, Vijay R, Rombaux, Philippe, Vodicka, Jan, Welge-Lüessen, Antje, Whitcroft, Katherine L, and Hummel, Thomas
- Abstract
The frequent association between coronavirus disease 2019 (COVID-19) and olfactory dysfunction is creating an unprecedented demand for a treatment of the olfactory loss. Systemic corticosteroids have been considered as a therapeutic option. However, based on current literature, we call for caution using these treatments in early COVID-19-related olfactory dysfunction because: (1) evidence supporting their usefulness is weak; (2) the rate of spontaneous recovery of COVID-19-related olfactory dysfunction is high; and (3) corticosteroids have well-known potential adverse effects. We encourage randomized placebo-controlled trials investigating the efficacy of systemic steroids in this indication and strongly emphasize to initially consider smell training, which is supported by a robust evidence base and has no known side effects.
- Published
- 2021
15. Clinical Olfactory Working Group consensus statement on the treatment of postinfectious olfactory dysfunction.
- Author
-
UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Addison, Alfred B, Wong, Billy, Ahmed, Tanzime, Macchi, Alberto, Konstantinidis, Iordanis, Huart, Caroline, Frasnelli, Johannes, Fjaeldstad, Alexander W, Ramakrishnan, Vijay R, Rombaux, Philippe, Whitcroft, Katherine L, Holbrook, Eric H, Poletti, Sophia C, Hsieh, Julien W, Landis, Basile N, Boardman, James, Welge-Lüssen, Antje, Maru, Devina, Hummel, Thomas, Philpott, Carl M, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Addison, Alfred B, Wong, Billy, Ahmed, Tanzime, Macchi, Alberto, Konstantinidis, Iordanis, Huart, Caroline, Frasnelli, Johannes, Fjaeldstad, Alexander W, Ramakrishnan, Vijay R, Rombaux, Philippe, Whitcroft, Katherine L, Holbrook, Eric H, Poletti, Sophia C, Hsieh, Julien W, Landis, Basile N, Boardman, James, Welge-Lüssen, Antje, Maru, Devina, Hummel, Thomas, and Philpott, Carl M
- Abstract
Respiratory tract viruses are the second most common cause of olfactory dysfunction. As we learn more about the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the recognition that olfactory dysfunction is a key symptom of this disease process, there is a greater need than ever for evidence-based management of postinfectious olfactory dysfunction (PIOD). Our aim was to provide an evidence-based practical guide to the management of PIOD (including post-coronavirus 2019 cases) for both primary care practitioners and hospital specialists. A systematic review of the treatment options available for the management of PIOD was performed. The written systematic review was then circulated among the members of the Clinical Olfactory Working Group for their perusal before roundtable expert discussion of the treatment options. The group also undertook a survey to determine their current clinical practice with regard to treatment of PIOD. The search resulted in 467 citations, of which 107 articles were fully reviewed and analyzed for eligibility; 40 citations fulfilled the inclusion criteria, 11 of which were randomized controlled trials. In total, 15 of the articles specifically looked at PIOD whereas the other 25 included other etiologies for olfactory dysfunction. The Clinical Olfactory Working Group members made an overwhelming recommendation for olfactory training; none recommended monocycline antibiotics. The diagnostic role of oral steroids was discussed; some group members were in favor of vitamin A drops. Further research is needed to confirm the place of other therapeutic options.
- Published
- 2021
16. Corrigendum to: More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.
- Author
-
UCL - SSS/IONS - Institute of NeuroScience, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, Katherine L, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie D C, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E A, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D'Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper H B, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, GCCR Group Author, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, Hayes, John E, UCL - SSS/IONS - Institute of NeuroScience, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, Katherine L, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie D C, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E A, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D'Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper H B, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, GCCR Group Author, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, and Hayes, John E
- Abstract
This is a correction notice for article bjaa041 (DOI: https://doi.org/10.1093/chemse/bjaa041), published 20 June 2020. An incorrect version of the caption to Figure 5 was mistakenly included in the published paper. An updated version is given below. Neither the data nor the paper’s conclusions were affected by this correction. The authors sincerely apologize for the error.
- Published
- 2021
17. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms
- Author
-
Gerkin, Richard C., Ohla, Kathrin, Veldhuizen, Maria G., Joseph, Paule, Kelly, Christine E., Bakke, Alyssa J., Steele, Kimberley E., Farruggia, Michael C., Pellegrino, Robert, Pepino, Marta Y., Bouysset, Cedric, Soler, Graciela M., Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W., Croijmans, Ilja, Di Pizio, Antonella, Ozdener, Mehmet Hakan, Fjaeldstad, Alexander W., Lin, Cailu, Sandell, Mari A., Singh, Preet B., Brindha, V. Evelyn, Olsson, Shannon B., Saraiva, Luis R., Ahuja, Gaurav, Alwashahi, Mohammed K., Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A., Golebiowski, Jerome, Hwang, Liang Dar, Ozturk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L., Faraji, Farhoud, Fischmeister, Florian Ph S., Heinbockel, Thomas, Hsieh, Julien W., Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K., Philpott, Carl M., Pierron, Denis, Shields, Vonnie D. C., Voznessenskaya, Vera V., Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, Maria Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundstrom, Johan N., Macchi, Alberto, Meyer, Pablo, Moein, Shima T., Santamaria, Enrique, Sengupta, Debarka, Dominguez, Paloma Rohlfs, Yanik, Huseyin, Hummel, Thomas, Hayes, John E., Reed, Danielle R., Niv, Masha Y., Munger, Steven D., Parma, Valentina, Gerkin, Richard C., Ohla, Kathrin, Veldhuizen, Maria G., Joseph, Paule, Kelly, Christine E., Bakke, Alyssa J., Steele, Kimberley E., Farruggia, Michael C., Pellegrino, Robert, Pepino, Marta Y., Bouysset, Cedric, Soler, Graciela M., Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W., Croijmans, Ilja, Di Pizio, Antonella, Ozdener, Mehmet Hakan, Fjaeldstad, Alexander W., Lin, Cailu, Sandell, Mari A., Singh, Preet B., Brindha, V. Evelyn, Olsson, Shannon B., Saraiva, Luis R., Ahuja, Gaurav, Alwashahi, Mohammed K., Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A., Golebiowski, Jerome, Hwang, Liang Dar, Ozturk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L., Faraji, Farhoud, Fischmeister, Florian Ph S., Heinbockel, Thomas, Hsieh, Julien W., Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K., Philpott, Carl M., Pierron, Denis, Shields, Vonnie D. C., Voznessenskaya, Vera V., Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, Maria Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundstrom, Johan N., Macchi, Alberto, Meyer, Pablo, Moein, Shima T., Santamaria, Enrique, Sengupta, Debarka, Dominguez, Paloma Rohlfs, Yanik, Huseyin, Hummel, Thomas, Hayes, John E., Reed, Danielle R., Niv, Masha Y., Munger, Steven D., and Parma, Valentina
- Abstract
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0–100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19−; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19− groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: −82.5 ± 27.2 points; C19−: −59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0–10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.
- Published
- 2021
- Full Text
- View/download PDF
18. Clinical Olfactory Working Group consensus statement on the treatment of postinfectious olfactory dysfunction
- Author
-
Addison, Alfred B., primary, Wong, Billy, additional, Ahmed, Tanzime, additional, Macchi, Alberto, additional, Konstantinidis, Iordanis, additional, Huart, Caroline, additional, Frasnelli, Johannes, additional, Fjaeldstad, Alexander W., additional, Ramakrishnan, Vijay R., additional, Rombaux, Philippe, additional, Whitcroft, Katherine L., additional, Holbrook, Eric H., additional, Poletti, Sophia C., additional, Hsieh, Julien W., additional, Landis, Basile N., additional, Boardman, James, additional, Welge-Lüssen, Antje, additional, Maru, Devina, additional, Hummel, Thomas, additional, and Philpott, Carl M., additional
- Published
- 2021
- Full Text
- View/download PDF
19. The association between halitosis and chemosensory disorders: A systematic review
- Author
-
Schertel Cassiano, Luisa, primary, Leite, Fábio R.M., additional, López, Rodrigo, additional, Fjaeldstad, Alexander W., additional, and Nascimento, Gustavo G., additional
- Published
- 2021
- Full Text
- View/download PDF
20. Systemic corticosteroids in coronavirus disease 2019 (COVID‐19)‐related smell dysfunction: an international view
- Author
-
Huart, Caroline, primary, Philpott, Carl M., additional, Altundag, Aytug, additional, Fjaeldstad, Alexander W., additional, Frasnelli, Johannes, additional, Gane, Simon, additional, Hsieh, Julien W., additional, Holbrook, Eric H., additional, Konstantinidis, Iordanis, additional, Landis, Basile N., additional, Macchi, Alberto, additional, Mueller, Christian A., additional, Negoias, Simona, additional, Pinto, Jayant M., additional, Poletti, Sophia C., additional, Ramakrishnan, Vijay R., additional, Rombaux, Philippe, additional, Vodicka, Jan, additional, Welge‐Lüessen, Antje, additional, Whitcroft, Katherine L., additional, and Hummel, Thomas, additional
- Published
- 2021
- Full Text
- View/download PDF
21. Lugte og smagstab ved COVID-19
- Author
-
Fjældstad, Alexander W. and Ovesen, Therese
- Abstract
In the aftermath of COVID-19, the association between SARS-CoV-2 and chemosensory deficits have been well established. Taste and smell loss have been included in the official lists of symptoms worldwide, as it is a common symptom (and for some patients the only symptom) of COVID-19 as described in this review. Patients with COVID-19 often have combined taste and smell loss, have a milder clinical presentation, and are younger than previous patients with postviral olfactory loss.
- Published
- 2020
22. Taste and smell loss in patients with COVID-19
- Author
-
Fjældstad, Alexander W. and Ovesen, Therese
- Subjects
otorhinolaryngologic diseases - Abstract
In the aftermath of COVID-19, the association between SARS-CoV-2 and chemosensory deficits have been well established. Taste and smell loss have been included in the official lists of symptoms worldwide, as it is a common symptom (and for some patients the only symptom) of COVID-19 as described in this review. Patients with COVID-19 often have combined taste and smell loss, have a milder clinical presentation, and are younger than previous patients with postviral olfactory loss. Patients should start olfactory training early and should be seen by an ear, nose and throat physician if they do not experience improvement of the senses within 12 weeks.
- Published
- 2020
23. Recent smell loss is the best predictor of COVID-19:a preregistered, cross-sectional study
- Author
-
Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria Geraldine, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian Ph S, Heinbockel, Thomas, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Denis, Shields, Vonnie D C, Voznessenskaya, Vera V, and Albayay, Javier
- Subjects
COVID-19 ,Lugtesans - Abstract
BACKGROUND: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19.METHODS: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery.RESULTS: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset.CONCLUSIONS: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
- Published
- 2020
24. Chemosensory Sensitivity after Coffee Consumption Is Not Static:Short-Term Effects on Gustatory and Olfactory Sensitivity
- Author
-
Fjaeldstad, Alexander W and Fernandes, Henrique M
- Subjects
Smag ,Smagssans ,Flavour ,Lugt ,Lugtesans - Abstract
Chemosensory sensitivity has great variation between individuals. This variation complicates the chemosensory diagnostics, as well as the creation of a meal with universally high hedonic value. To ensure accurate characterization of chemosensory function, a common rule of thumb is to avoid food/beverages one hour before chemosensory testing. However, the scientific foundation of this time of fast remains unclear. Furthermore, the role of coffee on immediate chemosensitivity is not known and may have implications for optimization of gastronomy and hedonia. The aim of this study is to investigate the modularity effects of coffee consumption on immediate gustatory and olfactory sensitivity. We included 155 participants. By applying tests for olfactory and gustatory sensitivity before and after coffee intake, we found no changes in olfactory sensitivity, but significantly altered sensitivity for some basic tastants. We repeated our experimental paradigm using decaffeinated coffee and found similar results. Our results demonstrate that coffee (regular and decaffeinated) alters the subsequent perception of taste, specifically by increasing the sensitivity to sweet and decreasing the sensitivity to bitter. Our findings provide the first evidence of how coffee impacts short-term taste sensitivity and consequently the way we sense and perceive food following coffee intake-an important insight in the context of gastronomy, as well as in chemosensory testing procedures.
- Published
- 2020
25. Recent smell loss is the best predictor of COVID-19: a preregistered, cross-sectional study
- Author
-
Parma, Valentina, Overdevest, Jonathan B, Peng, Mei, Saatci, Ozlem, Sell, Elizabeth A, Yan, Carol H, Alfaro, Raul, Cecchetto, Cinzia, Coureaud, Gérard, Herriman, Riley D, Justice, Jeb M, Kaushik, Pavan Kumar, Koyama, Sachiko, Pirastu, Nicola, Ning, Yuping, Ramirez, Vicente A, Roberts, S Craig, Smith, Barry C, Cao, Hongyuan, Wang, Hong, Balungwe, Patrick, Baguma, Marius, Hummel, Thomas, Hayes, John E, Reed, Danielle R, Niv, Masha Y, Munger, Steven D, Ozturk, Elif E, Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria Geraldine, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian Ph S, Heinbockel, Thomas, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Denis, Shields, Vonnie D C, Voznessenskaya, Vera V, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan N, Macchi, Alberto, Meyer, Pablo, Moein, Shima T, Santamaría, Enrique, Sengupta, Debarka, Domínguez, Paloma Paloma, Yanık, Hüseyin, Boesveldt, Sanne, de Groot, Jasper H B, Dinnella, Caterina, Freiherr, Jessica, Laktionova, Tatiana, Mariño, Sajidxa, Monteleone, Erminio, Nunez-Parra, Alexia, Abdulrahman, Olagunju, Ritchie, Marina, Thomas-Danguin, Thierry, Walsh-Messinger, Julie, Al Abri, Rashid, Alizadeh, Rafieh, Bignon, Emmanuelle, Cantone, Elena, Cecchini, Maria Paola, Chen, Jingguo, Guàrdia, Maria Dolors, Hoover, Kara C, Karni, Noam, Navarro, Marta, Nolden, Alissa A, Mazal, Patricia Portillo, Rowan, Nicholas R, Sarabi-Jamab, Atiye, Archer, Nicholas S, Chen, Ben, Di Valerio, Elizabeth A, Feeney, Emma L, Frasnelli, Johannes, Hannum, Mackenzie, Hopkins, Claire, Klein, Hadar, Mignot, Coralie, Mucignat, Carla, UCL - (SLuc) Service d'oto-rhino-laryngologie, and UCL - SSS/IONS/NEUR - Clinical Neuroscience
- Abstract
COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19. This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset. As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
- Published
- 2020
26. More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.
- Author
-
UCL - SSS/IONS - Institute of NeuroScience, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, Katherine L, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie D C, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E A, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D'Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper H B, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, GCCR Group Author, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, Hayes, John E, UCL - SSS/IONS - Institute of NeuroScience, UCL - SSS/IONS/NEUR - Clinical Neuroscience, UCL - (SLuc) Service d'oto-rhino-laryngologie, Parma, Valentina, Ohla, Kathrin, Veldhuizen, Maria G, Niv, Masha Y, Kelly, Christine E, Bakke, Alyssa J, Cooper, Keiland W, Bouysset, Cédric, Pirastu, Nicola, Dibattista, Michele, Kaur, Rishemjit, Liuzza, Marco Tullio, Pepino, Marta Y, Schöpf, Veronika, Pereda-Loth, Veronica, Olsson, Shannon B, Gerkin, Richard C, Rohlfs Domínguez, Paloma, Albayay, Javier, Farruggia, Michael C, Bhutani, Surabhi, Fjaeldstad, Alexander W, Kumar, Ritesh, Menini, Anna, Bensafi, Moustafa, Sandell, Mari, Konstantinidis, Iordanis, Di Pizio, Antonella, Genovese, Federica, Öztürk, Lina, Thomas-Danguin, Thierry, Frasnelli, Johannes, Boesveldt, Sanne, Saatci, Özlem, Saraiva, Luis R, Lin, Cailu, Golebiowski, Jérôme, Hwang, Liang-Dar, Ozdener, Mehmet Hakan, Guàrdia, Maria Dolors, Laudamiel, Christophe, Ritchie, Marina, Havlícek, Jan, Pierron, Denis, Roura, Eugeni, Navarro, Marta, Nolden, Alissa A, Lim, Juyun, Whitcroft, Katherine L, Colquitt, Lauren R, Ferdenzi, Camille, Brindha, Evelyn V, Altundag, Aytug, Macchi, Alberto, Nunez-Parra, Alexia, Patel, Zara M, Fiorucci, Sébastien, Philpott, Carl M, Smith, Barry C, Lundström, Johan N, Mucignat, Carla, Parker, Jane K, van den Brink, Mirjam, Schmuker, Michael, Fischmeister, Florian Ph S, Heinbockel, Thomas, Shields, Vonnie D C, Faraji, Farhoud, Santamaría, Enrique, Fredborg, William E A, Morini, Gabriella, Olofsson, Jonas K, Jalessi, Maryam, Karni, Noam, D'Errico, Anna, Alizadeh, Rafieh, Pellegrino, Robert, Meyer, Pablo, Huart, Caroline, Chen, Ben, Soler, Graciela M, Alwashahi, Mohammed K, Welge-Lüssen, Antje, Freiherr, Jessica, de Groot, Jasper H B, Klein, Hadar, Okamoto, Masako, Singh, Preet Bano, Hsieh, Julien W, GCCR Group Author, Reed, Danielle R, Hummel, Thomas, Munger, Steven D, and Hayes, John E
- Abstract
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.
- Published
- 2020
27. Chemosensory Sensitivity after Coffee Consumption Is Not Static: Short-Term Effects on Gustatory and Olfactory Sensitivity
- Author
-
Fjaeldstad, Alexander W., primary and Fernandes, Henrique M., additional
- Published
- 2020
- Full Text
- View/download PDF
28. The Association Between Smoking on Olfactory Dysfunction in 3,900 Patients With Olfactory Loss
- Author
-
Fjaeldstad, Alexander W., primary, Ovesen, Therese, additional, and Hummel, Thomas, additional
- Published
- 2020
- Full Text
- View/download PDF
29. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms.
- Author
-
Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria G, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Pizio, Antonella Di, Ozdener, Mehmet Hakan, Fjaeldstad, Alexander W, and Lin, Cailu
- Abstract
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0–100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19−; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19− groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: −82.5 ± 27.2 points; C19−: −59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g. fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0–10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
30. The Association Between Smoking on Olfactory Dysfunction in 3,900 Patients With Olfactory Loss.
- Author
-
Fjaeldstad, Alexander W., Ovesen, Therese, and Hummel, Thomas
- Abstract
Objectives/hypothesis: The association between smoking and olfactory loss remains a conundrum. Prior studies have found negative and positive effects of smoking on olfactory function in the general population. However, smoking cessation seems to improve both rated and measured olfactory function. The purpose of this study was to investigate the olfactory function and smoking habits in patients with olfactory loss caused by different etiologies to unveil underlying patterns related to smoking.Study Design: Retrospective observational study.Methods: Patients were included from two specialized taste and smell centers. Patients underwent olfactory testing, clinical examination including rhinoscopy, and the underlying etiology was identified. Patterns of olfactory test scores, demographics, and etiologies were analyzed.Results: In total, 3,900 patients with olfactory loss were included. Of these, 521 were current smokers, and 316 were former smokers. Patients with a history of smoking did not have significantly lower olfactory function. Current smokers were more often affected by posttraumatic olfactory loss, but not sinonasal, postviral, or idiopathic olfactory loss.Conclusions: Current smoking, but not former smoking, was associated with posttraumatic olfactory loss. In relation to measured olfactory function, a history of smoking was not associated to lower olfactory scores. Our findings suggest that the general recommendations of smoking cessation for patients with olfactory loss are especially relevant for patients with posttraumatic olfactory loss. The nature of this association between current smoking and posttraumatic olfactory loss has yet to be elucidated.Level Of Evidence: 2b Laryngoscope, 131:E8-E13, 2021. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
31. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms
- Author
-
Gerkin, Richard, Ohla, Kathrin, Veldhuizen, Maria, Joseph, Paule, Kelly, Christine, Bakke, Alyssa, Steele, Kimberley, Farruggia, Michael, Pellegrino, Robert, Pepino, Marta, Bouysset, Cédric, Soler, Graciela, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, Mehmet Hakan, Fjaeldstad, Alexander, Lin, Cailu, Sandell, Mari, Singh, Preet, Brindha, Evelyn, Olsson, Shannon, Saraiva, Luis, Ahuja, Gaurav, Alwashahi, Mohammed, Bhutani, Surabhi, D’Errico, Anna, Fornazieri, Marco, Golebiowski, Jérôme, Dar Hwang, Liang, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine, Faraji, Farhoud, Fischmeister, Florian, Heinbockel, Thomas, Hsieh, Julien, Huart, Caroline, Konstantinidis, Iordanis, Menini, Anna, Morini, Gabriella, Olofsson, Jonas, Philpott, Carl, Pierron, Denis, Shields, Vonnie, Voznessenskaya, Vera, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan, Macchi, Alberto, Meyer, Pablo, Moein, Shima, Santamaría, Enrique, Sengupta, Debarka, Rohlfs Dominguez, Paloma, Yanik, Hüseyin, Hummel, Thomas, Hayes, John, Reed, Danielle, Niv, Masha, Munger, Steven, Parma, Valentina, Boesveldt, Sanne, de Groot, Jasper, Dinnella, Caterina, Freiherr, Jessica, Laktionova, Tatiana, Marino, Sajidxa, Monteleone, Erminio, Nunez-Parra, Alexia, Abdulrahman, Olagunju, Ritchie, Marina, Thomas-Danguin, Thierry, Walsh-Messinger, Julie, Al Abri, Rashid, Alizadeh, Rafieh, Bignon, Emmanuelle, Cantone, Elena, Paola Cecchini, Maria, Chen, Jingguo, Dolors Guàrdia, Maria, Hoover, Kara, Karni, Noam, Navarro, Marta, Nolden, Alissa, Portillo Mazal, Patricia, Rowan, Nicholas, Sarabi-Jamab, Atiye, Archer, Nicholas, Chen, Ben, Di Valerio, Elizabeth, Feeney, Emma, Frasnelli, Johannes, Hannum, Mackenzie, Hopkins, Claire, Klein, Hadar, Mignot, Coralie, Mucignat, Carla, Ning, Yuping, Ozturk, Elif, Peng, Mei, Saatci, Ozlem, Sell, Elizabeth, Yan, Carol, Alfaro, Raul, Coureaud, G., Herriman, Riley, Justice, Jeb, Kaushik, Pavan Kumar, Koyama, Sachiko, Overdevest, Jonathan, Pirastu, Nicola, Ramirez, Vicente, Roberts, S. Craig, Smith, Barry, Cao, Hongyuan, Wang, Hong, Balungwe Birindwa, Patrick, Baguma, Marius, Ozdener, Mehmet, Bock, María, Kaushik, Pavan, Pizio, Antonella, Hakan Ozdener, Mehmet, D'Errico, Anna, Hwang, Liang Dar, Group, GCCR, Cecchini, Maria, Indústries Alimentàries, Qualitat i Tecnologia Alimentària, Arizona State University [Tempe] (ASU), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, Mersin University, National Institutes of Health [Bethesda] (NIH), AbScent, Pennsylvania State University (Penn State), Penn State System, Yale University [New Haven], University of Tennessee, University of Illinois at Urbana-Champaign [Urbana], University of Illinois System, Institut de Chimie de Nice (ICN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Buenos Aires University and GEOG (Grupo de Estudio de Olfato y Gusto), Centre d'anthropologie et de génomique de Toulouse (CAGT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Bari Aldo Moro (UNIBA), University of California, Utrecht University [Utrecht], Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Monell Chemical Senses Center, Regional Hospital West Jutland [Denmark], University of Helsinki, University of Oslo (UiO), Karunya Institute of Technology and Sciences, Tata Institute of Fundamental Research, Sidra Medicine [Doha, Qatar], Indraprastha Institute of Information Technology [New Delhi] (IIIT-Delhi), Sultan Qaboos University (SQU), San Diego State University (SDSU), Goethe-University Frankfurt am Main, State University of Londrina = Universidade Estadual de Londrina, Elena Cantone, University of Queensland - The Diamantina Institute, University of Queensland [Brisbane], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), University College of London [London] (UCL), UC San Diego Health, Karl-Franzens-Universität [Graz, Autriche], Howard University College of Medicine [Washington, DC, USA], Geneva University Hospitals and Geneva University, Cliniques Universitaires Saint-Luc [Bruxelles], Aristotle University of Thessaloniki, Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS), Stockholm University, University of East Anglia [Norwich] (UEA), Towson University [Towson, MD, United States], University of Maryland System, Severtsov Institute of Ecology and Evolution RAS, University of Padova [Padova, Italy], Biruni University, Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hospital General de Barrio Obrero [Asunción, Paraguay] (Public Hospital Barrio Obrero ), Private practice [Milan], DreamAir Llc, Oregon State University (OSU), Karolinska Institutet [Stockholm], University of Insubria, Varese, IBM Watson Research Center, IBM, Navarrabiomed-IdiSNA, University of Extremadura, Technische Universität Dresden = Dresden University of Technology (TU Dresden), The Hebrew University of Jerusalem (HUJ), University of Florida [Gainesville] (UF), Temple University [Philadelphia], Pennsylvania Commonwealth System of Higher Education (PCSHE), Wageningen University and Research [Wageningen] (WUR), Radboud university [Nijmegen], Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Universidad de Chile = University of Chile [Santiago] (UCHILE), Federal University of Technology of Akure (FUTA), University of California [Berkeley], Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Bourgogne Franche-Comté [COMUE] (UBFC), University of Dayton, Iran University of Medical Sciences [Tehran, Iran] (IUMS), 'Federico II' University of Naples Medical School, University of Verona (UNIVR), Xi'an Jiaotong University (Xjtu), Institute of Agrifood Research and Technology (IRTA), University of Alaska [Fairbanks] (UAF), The Hebrew University Medical Center, University of Massachusetts System (UMASS), Instituto Universitario del Hospital Italiano [Buenos Aires, Argentina], Johns Hopkins University School of Medicine [Baltimore], Institute for Research in Fundamental Sciences [Tehran] (IPM), CSIRO Agriculture and Food (CSIRO), The First Affiliated Hospital of Guangzhou Medical University (GMU), University College Dublin [Dublin] (UCD), Université du Québec à Trois-Rivières (UQTR), Guy’s and St. Thomas’ Hospitals, University of Padova, Kilis Yedi Aralik University, University of Otago [Dunedin, Nouvelle-Zélande], Sancaktepe Education and Research Hospital, University of Pennsylvania [Philadelphia], University of California San Diego Health, Indiana University [Bloomington], Indiana University System, Columbia University Medical Center (CUMC), Columbia University [New York], University of Edinburgh, University of California [Merced], University of Stirling, University of London [London], Florida State University [Tallahassee] (FSU), Université catholique de Bukavu, University of Southern Queensland (USQ), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Technical University of Munich (TUM), University of Graz, Publica, Gerkin, Richard C, Ohla, Kathrin, Veldhuizen, Maria G, Joseph, Paule V, Kelly, Christine E, Bakke, Alyssa J, Steele, Kimberley E, Farruggia, Michael C, Pellegrino, Robert, Pepino, Marta Y, Bouysset, Cédric, Soler, Graciela M, Pereda-Loth, Veronica, Dibattista, Michele, Cooper, Keiland W, Croijmans, Ilja, Di Pizio, Antonella, Ozdener, M Hakan, Fjaeldstad, Alexander W, Lin, Cailu, Sandell, Mari A, Singh, Preet B, Brindha, V Evelyn, Olsson, Shannon B, Saraiva, Luis R, Ahuja, Gaurav, Alwashahi, Mohammed K, Bhutani, Surabhi, D'Errico, Anna, Fornazieri, Marco A, Golebiowski, Jérôme, Hwang, Liang-Dar, Öztürk, Lina, Roura, Eugeni, Spinelli, Sara, Whitcroft, Katherine L, Faraji, Farhoud, Fischmeister, Florian PhS, Heinbockel, Thoma, Hsieh, Julien W, Huart, Caroline, Konstantinidis, Iordani, Menini, Anna, Morini, Gabriella, Olofsson, Jonas K, Philpott, Carl M, Pierron, Deni, Shields, Vonnie D C, Voznessenskaya, Vera V, Albayay, Javier, Altundag, Aytug, Bensafi, Moustafa, Bock, María Adelaida, Calcinoni, Orietta, Fredborg, William, Laudamiel, Christophe, Lim, Juyun, Lundström, Johan N, Macchi, Alberto, Meyer, Pablo, Moein, Shima T, Santamaría, Enrique, Sengupta, Debarka, Dominguez, Paloma Rohlf, Yanik, Hüseyin, Hummel, Thoma, Hayes, John E, Reed, Danielle R, Niv, Masha Y, Munger, Steven D, Parma, Valentina, Tıp Fakültesi, UCL - SSS/IONS/NEUR - Clinical Neuroscience, and UCL - (SLuc) Service d'oto-rhino-laryngologie
- Subjects
Male ,Multivariate statistics ,Physiology ,Cross-sectional study ,[SDV]Life Sciences [q-bio] ,coronavirus ,Logistic regression ,Settore BIO/09 - Fisiologia ,Behavioral Neuroscience ,0302 clinical medicine ,Hyposmia ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Medicine ,030223 otorhinolaryngology ,Sensory Science and Eating Behaviour ,Chemosensory ,hyposmia ,Middle Aged ,Prognosis ,olfactory ,Sensory Systems ,Smell ,chemosensory ,ddc:540 ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,Female ,HEALTH ,medicine.symptom ,Adult ,medicine.medical_specialty ,Anosmia ,Coronavirus ,Olfactory ,Prediction ,COVID-19 ,Cross-Sectional Studies ,Humans ,SARS-CoV-2 ,Self Report ,663/664 ,Visual analogue scale ,Odds ,03 medical and health sciences ,Physiology (medical) ,Internal medicine ,QUALITY ,[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory Organs ,COVID-19 symptoms ,Behaviour Change and Well-being ,IDENTIFICATION ,business.industry ,Univariate ,prediction ,Sensoriek en eetgedrag ,business ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,anosmia ,Smell impairment - Abstract
Contains fulltext : 228204.pdf (Publisher’s version ) (Closed access) In a preregistered, cross-sectional study we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC=0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4
- Published
- 2020
32. Olfactory training in long COVID-19 patients with lasting symptoms including olfactory dysfunction.
- Author
-
Fjaeldstad AW, Ovesen T, Stankevice D, and Ovesen T
- Subjects
- Humans, Smell, Olfactory Training, Post-Acute COVID-19 Syndrome, Quality of Life, COVID-19 complications, Olfaction Disorders etiology, Olfaction Disorders therapy
- Abstract
Introduction: Two-thirds of patients with COVID-19 developed smell and taste dysfunction, of whom half experienced improvement within the first month. After six months, 5-15% still suffered from significant olfactory dysfunction (OD). Before COVID-19, olfactory training (OT) was proved to be effective in patients with post-infectious OD. Therefore, the present study aimed to investigate the progress of olfactory recovery with and without OT in patients with long COVID-19., Methods: Consecutive patients with long COVID-19 referred to the Flavour Clinic at Gødstrup Regional Hospital, Denmark, were enrolled. The diagnostic set-up at the first visit and follow-up included smell and taste tests, questionnaires, ENT examination and instructions in OT., Results: From January 2021 to April 2022, 52 patients were included due to long COVID-19-related OD. The majority of patients complained of distorted sensory quality, in particular, parosmia. Two-thirds of the patients reported a subjective improvement of their sense of smell and taste along with a significant decline in the negative impact on quality of life (p = 0.0001). Retesting at follow-up demonstrated a significant increase in smell scores (p = 0.023) where a minimal clinically important difference (MCID) in smell scores was found in 23% of patients. Full training compliance was significantly associated with the probability of MCID improvement (OR = 8.13; p = 0.04)., Conclusions: The average effect of OT is modest; however, full training compliance was significantly associated with an increased probability of a clinically relevant olfactory improvement., Funding: none., Trial Registration: not relevant., (Articles published in the DMJ are “open access”. This means that the articles are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits any non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.)
- Published
- 2023
33. Frequent reversible causes to deteriorised or lost olfactory or gustatory function.
- Author
-
Hvidt KC, Fjældstad AW, and Petersen KB
- Subjects
- Humans, SARS-CoV-2, Smell, Taste Disorders etiology, COVID-19 complications, Olfaction Disorders diagnosis, Olfaction Disorders etiology, Olfaction Disorders therapy
- Abstract
Change in olfactory and/or gustatory dysfunction have gained attention in recent years because of COVID-19. However, these symptoms are common and have numerous different aetiologies, which should not be forgotten. Adequate diagnostic work up and clinical examination is essential. Treatment may include olfactory training, topically applied steroids and perhaps surgery. This review summarises common reversible causes of olfactory and/or gustatory dysfunction and current treatment modalities.
- Published
- 2023
34. Covid-19 affects taste independently of smell: results from a combined chemosensory home test and online survey from a global cohort (N=10,953).
- Author
-
Nguyen H, Albayay J, Höchenberger R, Bhutani S, Boesveldt S, Busch NA, Croijmans I, Cooper KW, de Groot JHB, Farruggia MC, Fjaeldstad AW, Hayes JE, Hummel T, Joseph PV, Laktionova TK, Thomas-Danguin T, Veldhuizen MG, Voznessenskaya VV, Parma V, Pepino MY, and Ohla K
- Abstract
People often confuse smell loss with taste loss, so it is unclear how much gustatory function is reduced in patients self-reporting taste loss. Our pre-registered cross-sectional study design included an online survey in 12 languages with instructions for self-administering chemosensory tests with ten household items. Between June 2020 and March 2021, 10,953 individuals participated. Of these, 3,356 self-reported a positive and 602 a negative COVID-19 diagnosis (COVID+ and COVID-, respectively); 1,267 were awaiting test results (COVID?). The rest reported no respiratory illness and were grouped by symptoms: sudden smell/taste changes (STC, N=4,445), other symptoms excluding smell or taste loss (OthS, N=832), and no symptoms (NoS, N=416). Taste, smell, and oral irritation intensities and self-assessed abilities were rated on visual analog scales. Compared to the NoS group, COVID+ was associated with a 21% reduction in taste (95% Confidence Interval (CI): 15-28%), 47% in smell (95%-CI: 37-56%), and 17% in oral irritation (95%-CI: 10-25%) intensity. In all groups, perceived intensity of smell (r=0.84), taste (r=0.68), and oral irritation (r=0.37) was correlated. Our findings suggest most reports of taste dysfunction with COVID-19 were genuine and not due to misinterpreting smell loss as taste loss (i.e., a classical taste-flavor confusion). Assessing smell and taste intensity of household items is a promising, cost-effective screening tool that complements self-reports and helps to disentangle taste loss from smell loss. However, it does not replace standardized validated psychophysical tests.
- Published
- 2023
- Full Text
- View/download PDF
35. [Taste and smell loss in patients with COVID-19].
- Author
-
Fjældstad AW and Ovesen T
- Subjects
- Betacoronavirus, COVID-19, Humans, Pandemics, SARS-CoV-2, Coronavirus Infections complications, Olfaction Disorders virology, Pneumonia, Viral complications, Taste Disorders virology
- Abstract
In the aftermath of COVID-19, the association between SARS-CoV-2 and chemosensory deficits have been well established. Taste and smell loss have been included in the official lists of symptoms worldwide, as it is a common symptom (and for some patients the only symptom) of COVID-19 as described in this review. Patients with COVID-19 often have combined taste and smell loss, have a milder clinical presentation, and are younger than previous patients with postviral olfactory loss. Patients should start olfactory training early and should be seen by an ear, nose and throat physician if they do not experience improvement of the senses within 12 weeks.
- Published
- 2020
36. The best COVID-19 predictor is recent smell loss: a cross-sectional study.
- Author
-
Gerkin RC, Ohla K, Veldhuizen MG, Joseph PV, Kelly CE, Bakke AJ, Steele KE, Farruggia MC, Pellegrino R, Pepino MY, Bouysset C, Soler GM, Pereda-Loth V, Dibattista M, Cooper KW, Croijmans I, Di Pizio A, Ozdener MH, Fjaeldstad AW, Lin C, Sandell MA, Singh PB, Brindha VE, Olsson SB, Saraiva LR, Ahuja G, Alwashahi MK, Bhutani S, D'Errico A, Fornazieri MA, Golebiowski J, Hwang LD, Öztürk L, Roura E, Spinelli S, Whitcroft KL, Faraji F, Fischmeister FPS, Heinbockel T, Hsieh JW, Huart C, Konstantinidis I, Menini A, Morini G, Olofsson JK, Philpott CM, Pierron D, Shields VDC, Voznessenskaya VV, Albayay J, Altundag A, Bensafi M, Bock MA, Calcinoni O, Fredborg W, Laudamiel C, Lim J, Lundström JN, Macchi A, Meyer P, Moein ST, Santamaría E, Sengupta D, Domínguez PP, Yanık H, Boesveldt S, de Groot JHB, Dinnella C, Freiherr J, Laktionova T, Mariño S, Monteleone E, Nunez-Parra A, Abdulrahman O, Ritchie M, Thomas-Danguin T, Walsh-Messinger J, Al Abri R, Alizadeh R, Bignon E, Cantone E, Cecchini MP, Chen J, Guàrdia MD, Hoover KC, Karni N, Navarro M, Nolden AA, Mazal PP, Rowan NR, Sarabi-Jamab A, Archer NS, Chen B, Di Valerio EA, Feeney EL, Frasnelli J, Hannum M, Hopkins C, Klein H, Mignot C, Mucignat C, Ning Y, Ozturk EE, Peng M, Saatci O, Sell EA, Yan CH, Alfaro R, Cecchetto C, Coureaud G, Herriman RD, Justice JM, Kaushik PK, Koyama S, Overdevest JB, Pirastu N, Ramirez VA, Roberts SC, Smith BC, Cao H, Wang H, Balungwe P, Baguma M, Hummel T, Hayes JE, Reed DR, Niv MY, Munger SD, and Parma V
- Abstract
Background: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19., Methods: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery., Results: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset., Conclusions: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.