1. Galois self-dual cuspidal types and Asai local factors
- Author
-
Nadir Matringe, Vincent Sécherre, Robert Kurinczuk, Shaun Stevens, U. K. Anandavardhanan, Indian Institute of Technology Bombay (IIT Bombay), Imperial College London, Laboratoire de Mathématiques et Applications (LMA-Poitiers), Université de Poitiers-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and University of East Anglia [Norwich] (UEA)
- Subjects
Pure mathematics ,Mathematics::Number Theory ,General Mathematics ,2010 MSC: 22E50, 11F70 ,Type (model theory) ,01 natural sciences ,0101 Pure Mathematics ,Quadratic equation ,FOS: Mathematics ,Root number ,Locally compact space ,Representation Theory (math.RT) ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics ,22E50, 11F70 ,Type theory ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Applied Mathematics ,Cuspidal representation ,010102 general mathematics ,Test vector ,Extension (predicate logic) ,Distinction ,Automorphism ,Dual (category theory) ,Mathematics - Representation Theory - Abstract
Let $F/F_{\mathsf{o}}$ be a quadratic extension of non-archimedean locally compact fields of odd residual characteristic and $\sigma$ be its non-trivial automorphism. We show that any $\sigma$-self-dual cuspidal representation of ${\rm GL}_n(F)$ contains a $\sigma$-self-dual Bushnell--Kutzko type. Using such a type, we construct an explicit test vector for Flicker's local Asai $L$-function of a ${\rm GL}_n(F_{\mathsf{o}})$-distinguished cuspidal representation and compute the associated Asai root number. Finally, by using global methods, we compare this root number to Langlands--Shahidi's local Asai root number, and more generally we compare the corresponding epsilon factors for any cuspidal representation., Comment: 61 pages, final version to appear in JEMS
- Published
- 2021
- Full Text
- View/download PDF