Back to Search Start Over

Modular representations of GL(n) distinguished by GL(n-1) over a p-adic field

Authors :
Coolimuttam G. Venketasubramanian
Vincent Sécherre
Laboratoire de Mathématiques de Versailles (LMV)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Be'er Sheva]
Ben-Gurion University of the Negev (BGU)
Source :
International Mathematics Research Notices, International Mathematics Research Notices, Oxford University Press (OUP), 2017, 2017 (14), pp.4435-4492. ⟨10.1093/imrn/rnw150⟩
Publication Year :
2015

Abstract

Let $\F$ be a non-Archimedean locally compact field, $q$ be the cardinality of its residue field, and $\R$ be an algebraically closed field of characteristic $\ell$ not dividing $q$.We classify all irredu\-cible smooth $\R$-representations of $\GL\_n(\F)$ having a nonzero $\GL\_{n-1}(\F)$-inva\-riant linear form, when $q$ is not congruent to $1$ mod $\ell$.Partial results in the case when $q$ is $1$ mod $\ell$ show that, unlike the complex case, the space of $\GL\_{n-1}(\F)$-invariant linear forms has dimension $2$ for certain irreducible representations.

Details

Language :
English
ISSN :
10737928 and 16870247
Database :
OpenAIRE
Journal :
International Mathematics Research Notices, International Mathematics Research Notices, Oxford University Press (OUP), 2017, 2017 (14), pp.4435-4492. ⟨10.1093/imrn/rnw150⟩
Accession number :
edsair.doi.dedup.....1121c812b2cf3fa31249fb5b37d9b004
Full Text :
https://doi.org/10.1093/imrn/rnw150⟩