Back to Search
Start Over
Décomposition en blocs de la catégorie des représentations lisses ℓ-modulaires de GLn(F) et de ses formes intérieures
- Source :
- Annales Scientifiques de l'École Normale Supérieure, Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2016, 49 (3), pp.669-709. ⟨10.24033/asens.2293⟩
- Publication Year :
- 2014
-
Abstract
- Let F be a non-Archimedean locally compact field of residue characteristic p, let D be a finite dimensional central division F-algebra and let R be an algebraically closed field of characteristic different from p. To any irreducible smooth representation of G=GL(m,D) with coefficients in R, we can attach a uniquely determined inertial class of supercuspidal pairs of G. This provides us with a partition of the set of all isomorphism classes of irreducible representations of G. We write R(G) for the category of all smooth representations of G with coefficients in R. To any inertial class O of supercuspidal pairs of G, we can attach the subcategory R(O) made of smooth representations all of whose irreducible subquotients are in the subset determined by this inertial class. We prove that R(G) decomposes into the product of the R(O), where O ranges over all possible inertial class of supercuspidal pairs of G, and that each summand R(O) is indecomposable.<br />37 pages
- Subjects :
- Pure mathematics
General Mathematics
es inertielles
01 natural sciences
Modular representations of p-adic reductive groups
0103 physical sciences
FOS: Mathematics
Partition (number theory)
Locally compact space
0101 mathematics
Algebraically closed field
Representation Theory (math.RT)
2010 MSC: 22E50
Semisimple types
Mathematics::Representation Theory
Représentations modulaires des groupes réductifs p-adiques
Mathematics
Subcategory
Supercuspidal support
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
010102 general mathematics
blocs
16. Peace & justice
support supercuspidal
22E50
Blocks
Inertial classes
Irreducible representation
types semi-simples
010307 mathematical physics
Indecomposable module
Mathematics - Representation Theory
Subjects
Details
- Language :
- English
- ISSN :
- 00129593 and 18732151
- Database :
- OpenAIRE
- Journal :
- Annales Scientifiques de l'École Normale Supérieure, Annales Scientifiques de l'École Normale Supérieure, Société mathématique de France, 2016, 49 (3), pp.669-709. ⟨10.24033/asens.2293⟩
- Accession number :
- edsair.doi.dedup.....356ab411af812bacdea1e39598bae487
- Full Text :
- https://doi.org/10.24033/asens.2293⟩