Back to Search Start Over

Représentations lisses modulo l de GL(m,D)

Authors :
Alberto Mínguez
Vincent Sécherre
Institut de Mathématiques de Jussieu (IMJ)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques de Versailles (LMV)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Duke Mathematical Journal, Duke Mathematical Journal, 2014, 163 (4)
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

Let F be a non-Archimedean locally compact field of residue characteristic p, let D be a finite dimensional central division F-algebra and let R be an algebraically closed field of characteristic different from p. We classify all smooth irreducible representations of GL(m,D) with coefficients in R, in terms of multisegments, generalizing works by Zelevinski, Tadic and Vign\'eras. We prove that any irreducible R-representation of GL(m,D) has a unique supercuspidal support, and thus get two classifications: one by supercuspidal multisegments, classifying representations with a given supercuspidal support, and one by aperiodic multisegments, classifying representations with a given cuspidal support. These constructions are made in a purely local way, with a substantial use of type theory.<br />Comment: in French

Details

Language :
French
ISSN :
00127094 and 15477398
Database :
OpenAIRE
Journal :
Duke Mathematical Journal, Duke Mathematical Journal, 2014, 163 (4)
Accession number :
edsair.doi.dedup.....af943ac13ed81c7c52756e500581cec8