1. Error estimates of local energy regularization for the logarithmic Schrodinger equation
- Author
-
Chunmei Su, Rémi Carles, Qinglin Tang, Weizhu Bao, Department of Mathematics [Singapore], National University of Singapore (NUS), Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Yau Mathematical Sciences Center, Tsinghua University, School of Mathematics, State Key Laboratory of Hydraulics and Mountain River Engineering, Chengdu University of Technology (CDUT), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-École normale supérieure - Rennes (ENS Rennes)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), and Technische Universität München [München] (TUM)
- Subjects
Quadratic growth ,Polynomial ,Partial differential equation ,Logarithm ,Applied Mathematics ,010102 general mathematics ,Numerical Analysis (math.NA) ,16. Peace & justice ,01 natural sciences ,Regularization (mathematics) ,010101 applied mathematics ,Nonlinear system ,Rate of convergence ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Modeling and Simulation ,FOS: Mathematics ,Applied mathematics ,Mathematics - Numerical Analysis ,0101 mathematics ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics ,Energy functional - Abstract
The logarithmic nonlinearity has been used in many partial differential equations (PDEs) for modeling problems in various applications.Due to the singularity of the logarithmic function, it introducestremendous difficulties in establishing mathematical theories, as well asin designing and analyzing numerical methods for PDEs with such nonlinearity. Here we take the logarithmic Schr\"odinger equation (LogSE)as a prototype model. Instead of regularizing $f(\rho)=\ln \rho$ in theLogSE directly and globally as being done in the literature, we propose a local energy regularization (LER) for the LogSE byfirst regularizing $F(\rho)=\rho\ln \rho -\rho$ locally near $\rho=0^+$ with a polynomial approximation in the energy functional of the LogSE and then obtaining an energy regularized logarithmic Schr\"odinger equation (ERLogSE) via energy variation. Linear convergence is established between the solutions of ERLogSE and LogSE in terms of a small regularization parameter $0, Comment: 31 pages, 10 figures, final version. More explanations and some proofs are more detailed
- Published
- 2022
- Full Text
- View/download PDF