Back to Search Start Over

On the time evolution of Wigner measures for Schrodinger equations

Authors :
Rémi Carles
Norbert J. Mauser
Clotilde Fermanian-Kammerer
Hans Peter Stimming
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA)
Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
Wolfgang Pauli Institute (WPI)
University of Vienna [Vienna]
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM)
Source :
Communications on Pure and Applied Analysis, Communications on Pure and Applied Analysis, AIMS American Institute of Mathematical Sciences, 2009, 8 (2), pp.559-585. ⟨10.3934/cpaa.2009.8.559⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schrodinger equations, we list some examples where Wigner measures cannot be a good tool to describe high frequency limits. Typically, the Wigner measures may not capture effects which are not negligible at the pointwise level, or the propagation of Wigner measures may be an ill-posed problem. In the latter situation, two families of functions may have the same Wigner measures at some initial time, but different Wigner measures for a larger time. In the case of systems, this difficulty can partially be avoided by considering more refined Wigner measures such as two-scale Wigner measures; however, we give examples of situations where this quadratic approach fails.<br />Comment: Survey, 26 pages

Details

Language :
English
ISSN :
15340392 and 15535258
Database :
OpenAIRE
Journal :
Communications on Pure and Applied Analysis, Communications on Pure and Applied Analysis, AIMS American Institute of Mathematical Sciences, 2009, 8 (2), pp.559-585. ⟨10.3934/cpaa.2009.8.559⟩
Accession number :
edsair.doi.dedup.....fbf66537591a33f71f4fbc28434ddf29
Full Text :
https://doi.org/10.3934/cpaa.2009.8.559⟩