Back to Search
Start Over
Error estimates of a regularized finite difference method for the logarithmic Schr\'odinger equation
- Source :
- SIAM Journal on Numerical Analysis, SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2019, 57 (2), pp.657-680. ⟨10.1137/18M1177445⟩, SIAM Journal on Numerical Analysis, 2019, 57 (2), pp.657-680. ⟨10.1137/18M1177445⟩
- Publication Year :
- 2018
-
Abstract
- We present a regularized finite difference method for the logarithmic Schr\"odinger equation (LogSE) and establish its error bound. Due to the blow-up of the logarithmic nonlinearity, i.e. $\ln \rho\to -\infty$ when $\rho\rightarrow 0^+$ with $\rho=|u|^2$ being the density and $u$ being the complex-valued wave function or order parameter, there are significant difficulties in designing numerical methods and establishing their error bounds for the LogSE. In order to suppress the round-off error and to avoid blow-up, a regularized logarithmic Schr\"odinger equation (RLogSE) is proposed with a small regularization parameter $0<br />Comment: 23 pages, 4 figures
- Subjects :
- Numerical Analysis
Logarithm
Logarithmic Schrödinger equation
AMS subject classifications. 35Q40, 35Q55, 65M15, 81Q05
Applied Mathematics
Mathematical analysis
Finite difference method
010103 numerical & computational mathematics
regularized logarithmic Schrödinger equation
01 natural sciences
Computational Mathematics
Nonlinear system
convergence rate
35Q40, 35Q55, 65M15, 81Q05
Rate of convergence
error estimates
Mathematics - Numerical Analysis
0101 mathematics
semi-implicit finite difference method
logarithmic nonlinearity
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00361429
- Database :
- OpenAIRE
- Journal :
- SIAM Journal on Numerical Analysis, SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2019, 57 (2), pp.657-680. ⟨10.1137/18M1177445⟩, SIAM Journal on Numerical Analysis, 2019, 57 (2), pp.657-680. ⟨10.1137/18M1177445⟩
- Accession number :
- edsair.doi.dedup.....ccd379614844449fc8bc45c8afe5eb76
- Full Text :
- https://doi.org/10.1137/18M1177445⟩