Back to Search Start Over

Multiphase weakly nonlinear geometric optics for Schrodinger equations

Authors :
Christof Sparber
Eric Dumas
Rémi Carles
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Institut Fourier (IF )
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)
Department of Applied Mathematics and Theoretical Physics (DAMTP)
University of Cambridge [UK] (CAM)
Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Department of Applied Mathematics and Theoretical Physics / Centre for Mathematical Sciences (DAMTP/CMS)
Source :
SIAM Journal on Mathematical Analysis, SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (1), pp.489-518. ⟨10.1137/090750871⟩
Publication Year :
2009
Publisher :
arXiv, 2009.

Abstract

We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrodinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation on the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrodinger equation on the torus in negative order Sobolev spaces.<br />Comment: 29 pages

Details

ISSN :
00361410
Database :
OpenAIRE
Journal :
SIAM Journal on Mathematical Analysis, SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2010, 42 (1), pp.489-518. ⟨10.1137/090750871⟩
Accession number :
edsair.doi.dedup.....d952927e9d780c70780307cc175bb255
Full Text :
https://doi.org/10.48550/arxiv.0902.2468