1. Parallel connected-Component-Labeling based on homotopy trees
- Author
-
Pedro Real, Pablo Sanchez-Cuevas, Helena Molina-Abril, Fernando Diaz-del-Rio, Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII), Universidad de Sevilla. Departamento de Arquitectura y Tecnología de Computadores, and Ministerio de Economía y Competitividad (MINECO). España
- Subjects
Pixel ,Computer science ,Computation ,Homotopy ,Parallelism ,02 engineering and technology ,01 natural sciences ,Computational topology ,Digital image ,Adjacency tree ,Artificial Intelligence ,0103 physical sciences ,Signal Processing ,0202 electrical engineering, electronic engineering, information engineering ,Adjacency list ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,Connected-Component-Labeling ,010306 general physics ,Connected-component labeling ,Algorithm ,Time complexity ,Software - Abstract
Taking advantage of the topological and isotopic properties of binary digital images, we present here anew algorithm for connected component labeling (CLL). A local-to-global treatment of the topologicalinformation within the image, allows us to develop an inherent parallel approach. The time complexityorder for an image of m ×n pixels, under the assumption that a processing element exists for each pixel, is near O (log(m + n )) . Additionally, our method computes both the foreground and background CCL, and allows a straightforward computation of topological features like Adjacency Trees. Experiments show thatour method obtains better performance metrics than other approaches. Our work aims at generating anew class of labeling algorithms: those centered in fully parallel approaches based on computationaltopology, thus allowing a perfect concurrent execution in multiple threads and preventing the use ofcritical sections and atomic instructions. Ministerio de Economía y Competitividad MTM2016-81030-P Ministerio de Economía y Competitividad TEC2012-37868-C04-02
- Published
- 2020
- Full Text
- View/download PDF