Back to Search Start Over

Allowing cycles in discrete Morse theory

Authors :
Jean-Luc Mari
Pedro Real
Aldo Gonzalez-Lorenzo
Alexandra Bac
Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
Laboratoire des Sciences de l'Information et des Systèmes (LSIS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
Aix Marseille Université (AMU)
MODélisation Géométrique (GMOD)
Laboratoire d'Informatique et Systèmes (LIS)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Universidad de Sevilla / University of Sevilla
Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU)
University of Sevilla
Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
Source :
Topology and its Applications, Topology and its Applications, 2017, 228, pp.1-35. ⟨10.1016/j.topol.2017.05.008⟩, idUS. Depósito de Investigación de la Universidad de Sevilla, instname, Topology and its Applications, Elsevier, 2017, 228, pp.1-35. ⟨10.1016/j.topol.2017.05.008⟩
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

International audience; Discrete gradient vector fields are combinatorial structures that can be used for accelerating the homology computation of CW complexes, such as simplicial or cubical complexes, by reducing their number of cells. Consequently, they provide a bound for the Betti numbers (the most basic homological information). A discrete gradient vector field can eventually reduce the complex to its minimal form, having as many cells of each dimension as its corresponding Betti number, but this is not guaranteed. Moreover, finding an optimal discrete gradient vector field is an NP-hard problem. We describe here a generalization, which we call Homological Discrete Vector Field (HDVF), which can overcome these limitations by allowing cycles under a certain algebraic condition. In this work we define the HDVF and its associated reduction, we study how to efficiently compute a HDVF, we establish the relation between the HDVF and other concepts in computational homology and we estimate the average complexity of its computation. We also introduce five basic operations for modifying a HDVF, which can also be applied to discrete gradient vector fields.

Details

ISSN :
01668641
Volume :
228
Database :
OpenAIRE
Journal :
Topology and its Applications
Accession number :
edsair.doi.dedup.....668c40148eeae7904221949601501865
Full Text :
https://doi.org/10.1016/j.topol.2017.05.008