Back to Search Start Over

A continuous analog for 4-dimensional objects

Authors :
Jean-Luc Mari
Ana Pacheco
Pedro Real
Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII)
GMOD-LSIS (GMOD-LSIS)
Laboratoire des Sciences de l'Information et des Systèmes (LSIS)
Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Université de Toulon (UTLN)-Aix Marseille Université (AMU)
Aix Marseille Université (AMU)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Arts et Métiers Paristech ENSAM Aix-en-Provence-Centre National de la Recherche Scientifique (CNRS)
Source :
idUS. Depósito de Investigación de la Universidad de Sevilla, instname, Annals of Mathematics and Artificial Intelligence, Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2013, 67 (1), pp.71-80. ⟨10.1007/s10472-013-9336-z⟩, Annals of Mathematics and Artificial Intelligence, 2013, 67 (1), pp.71-80. ⟨10.1007/s10472-013-9336-z⟩
Publication Year :
2013

Abstract

In this paper, we follow up on the studies developed by Kovalevsky (Comput Vis Graph Image Process 46:141---161, 1989) and Kenmochi et al. (Comput Vis Image Underst 71:281---293, 1998), which defined a continuous analog for a 4-dimensional digital object. Here, we construct a cell complex that has the same topological information as the original 4-dimensional digital object.

Details

Language :
English
ISSN :
10122443 and 15737470
Database :
OpenAIRE
Journal :
idUS. Depósito de Investigación de la Universidad de Sevilla, instname, Annals of Mathematics and Artificial Intelligence, Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2013, 67 (1), pp.71-80. ⟨10.1007/s10472-013-9336-z⟩, Annals of Mathematics and Artificial Intelligence, 2013, 67 (1), pp.71-80. ⟨10.1007/s10472-013-9336-z⟩
Accession number :
edsair.doi.dedup.....68d3722341a4e84451a0f1609bc3dcbf
Full Text :
https://doi.org/10.1007/s10472-013-9336-z⟩