1. Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices
- Author
-
Xavier Cartoixà, Maryam Parsa, Yee Rui Koh, Bjorn Vermeersch, Ali Shakouri, Je-Hyeong Bahk, Alvar Torelló, Pol Torres, Peide D. Ye, Yi Xuan, F. Xavier Alvarez, Amirkoushyar Ziabari, Birck Nanotechnology Center, Purdue University [West Lafayette], Universitat Autònoma de Barcelona (UAB), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Department of Computer Science [Purdue], University of California [Santa Cruz] (UC Santa Cruz), University of California (UC), European Project: 645776,H2020,H2020-NMP-2014-two-stage,ALMA(2015), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), University of California [Santa Cruz] (UCSC), and University of California
- Subjects
Materials science ,Science ,General Physics and Astronomy ,02 engineering and technology ,Imaging techniques ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Crosstalk ,symbols.namesake ,Thermal conductivity ,0103 physical sciences ,Thermal ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,lcsh:Science ,010306 general physics ,Nanoscopic scale ,[PHYS]Physics [physics] ,Multidisciplinary ,Nanoscale materials ,business.industry ,General Chemistry ,Full field ,021001 nanoscience & nanotechnology ,Condensed matter physics ,Semiconductor ,Fourier transform ,Nanoscale devices ,symbols ,Optoelectronics ,lcsh:Q ,0210 nano-technology ,business ,Submicron scale - Abstract
Understanding nanoscale thermal transport is of substantial importance for designing contemporary semiconductor technologies. Heat removal from small sources is well established to be severely impeded compared to diffusive predictions due to the ballistic nature of the dominant heat carriers. Experimental observations are commonly interpreted through a reduction of effective thermal conductivity, even though most measurements only probe a single aggregate thermal metric. Here, we employ thermoreflectance thermal imaging to directly visualise the 2D temperature field produced by localised heat sources on InGaAs with characteristic widths down to 100 nm. Besides displaying effective thermal performance reductions up to 50% at the active junctions in agreement with prior studies, our steady-state thermal images reveal that, remarkably, 1–3 μm adjacent to submicron devices the crosstalk is actually reduced by up to fourfold. Submicrosecond transient imaging additionally shows responses to be faster than conventionally predicted. A possible explanation based on hydrodynamic heat transport, and some open questions, are discussed., When thermal fields in semiconductors approach the submicron scale, non-diffusive heat transport is observed where Fourier based heat transport models fail. Here, the authors use thermal imaging to visualise these thermal field variations and in turn derive a hydrodynamic heat transport model.
- Published
- 2018
- Full Text
- View/download PDF