Back to Search Start Over

Classification of Markov Sources Through Joint String Complexity: Theory and Experiments

Authors :
Dimitris Milioris
Wojciech Szpankowski
Philippe Jacquet
Alcatel-Lucent Bell Labs France [Nozay]
Alcatel-Lucent Bell Labs France
High performance communication (HIPERCOM)
Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Laboratory of Information, Network and Communication Sciences (LINCS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)
École polytechnique (X)
Department of Computer Science [Purdue]
Purdue University [West Lafayette]
Source :
IEEE International Symposium on Information Theory, IEEE International Symposium on Information Theory, Jul 2013, Istanbul, Turkey, ISIT
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; We propose a classification test to discriminate Markov sources based on the joint string complexity. String complexity is defined as the cardinality of a set of all distinct words (factors) of a given string. For two strings, we define the joint string complexity as the cardinality of the set of words which both strings have in common. In this paper we analyze the average joint complexity when both strings are generated by two Markov sources. We provide fast converging asymptotic expansions and present some experimental results showing usefulness of the joint complexity to text discrimination.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE International Symposium on Information Theory, IEEE International Symposium on Information Theory, Jul 2013, Istanbul, Turkey, ISIT
Accession number :
edsair.doi.dedup.....d269039a2336c0568b95944274545b54