Back to Search Start Over

Feedforward Neural Networks for Caching: Enough or Too Much?

Authors :
Vladyslav Fedchenko
Bruno Ribeiro
Giovanni Neglia
Network Engineering and Operations (NEO )
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Department of Computer Science [Purdue]
Purdue University [West Lafayette]
Source :
ACM SIGMETRICS Performance Evaluation Review, ACM SIGMETRICS Performance Evaluation Review, 2019, 46 (3), pp.139-142. ⟨10.1145/3308897.3308958⟩, ACM SIGMETRICS Performance Evaluation Review, Association for Computing Machinery, 2019, 46 (3), pp.139-142. ⟨10.1145/3308897.3308958⟩
Publication Year :
2018

Abstract

International audience; We propose a caching policy that uses a feedforward neural network (FNN) to predict content popularity. Our scheme outperforms popular eviction policies like LRU or ARC, but also a new policy relying on the more complex recurrent neural networks. At the same time, replacing the FNN predictor with a naive linear estimator does not degrade caching performance significantly, questioning then the role of neural networks for these applications.

Details

Language :
English
ISSN :
01635999
Database :
OpenAIRE
Journal :
ACM SIGMETRICS Performance Evaluation Review, ACM SIGMETRICS Performance Evaluation Review, 2019, 46 (3), pp.139-142. ⟨10.1145/3308897.3308958⟩, ACM SIGMETRICS Performance Evaluation Review, Association for Computing Machinery, 2019, 46 (3), pp.139-142. ⟨10.1145/3308897.3308958⟩
Accession number :
edsair.doi.dedup.....248e32c54dc985da16944a4f471944c5
Full Text :
https://doi.org/10.1145/3308897.3308958⟩