1. Transcriptome analysis of MENX-associated rat pituitary adenomas identifies novel molecular mechanisms involved in the pathogenesis of human pituitary gonadotroph adenomas
- Author
-
Misu Lee, Rudi Beschorner, Johannes Beckers, Federico Roncaroli, Tsambika Psaras, Juergen Honegger, Marily Theodoropoulou, Martin Irmler, Natalia S. Pellegata, Ilaria Marinoni, and Natasa Anastasov
- Subjects
Adenoma ,endocrine system ,Pituitary gonadotroph adenoma ,Cellular differentiation ,Green Fluorescent Proteins ,Clinical Neurology ,Biology ,Biostatistics ,medicine.disease_cause ,Bioinformatics ,Transfection ,Pathology and Forensic Medicine ,Transcriptome ,CYP11A1 ,Cellular and Molecular Neuroscience ,Cell Line, Tumor ,medicine ,Animals ,Humans ,Pituitary Neoplasms ,Cholesterol Side-Chain Cleavage Enzyme ,Pituitary Gonadotroph Adenoma ,Transcriptome Analysis ,Menx Model ,Cyp11a1 ,Nusap1 ,Original Paper ,Microarray analysis techniques ,Gene Expression Profiling ,Pituitary tumors ,MENX model ,Computational Biology ,medicine.disease ,Microarray Analysis ,Rats ,Gene expression profiling ,Gene Expression Regulation, Neoplastic ,Cell Transformation, Neoplastic ,Gonadotropins, Pituitary ,Immunohistochemistry ,RNA Interference ,Neurology (clinical) ,NUSAP1 ,Transcriptome analysis ,Carcinogenesis ,Microtubule-Associated Proteins ,Transcription Factors - Abstract
Gonadotroph adenomas comprise 15–40 % of all pituitary tumors, are usually non-functioning and are often large and invasive at presentation. Surgery is the first-choice treatment, but complete resection is not always achieved, leading to high recurrence rates. As gonadotroph adenomas poorly respond to conventional pharmacological therapies, novel treatment strategies are needed. Their identification has been hampered by our incomplete understanding of the molecular pathogenesis of these tumors. Recently, we demonstrated that MENX-affected rats develop gonadotroph adenomas closely resembling their human counterparts. To discover new genes/pathways involved in gonadotroph cells tumorigenesis, we performed transcriptome profiling of rat tumors versus normal pituitary. Adenomas showed overrepresentation of genes involved in cell cycle, development, cell differentiation/proliferation, and lipid metabolism. Bioinformatic analysis identified downstream targets of the transcription factor SF-1 as being up-regulated in rat (and human) adenomas. Meta-analyses demonstrated remarkable similarities between gonadotroph adenomas in rats and humans, and highlighted common dysregulated genes, several of which were not previously implicated in pituitary tumorigenesis. Two such genes, CYP11A1 and NUSAP1, were analyzed in 39 human gonadotroph adenomas by qRT-PCR and found to be up-regulated in 77 and 95 % of cases, respectively. Immunohistochemistry detected high P450scc (encoded by CYP11A1) and NuSAP expression in 18 human gonadotroph tumors. In vitro studies demonstrated for the first time that Cyp11a1 is a target of SF-1 in gonadotroph cells and promotes proliferation/survival of rat pituitary adenoma primary cells and cell lines. Our studies reveal clues about the molecular mechanisms driving rat and human gonadotroph adenomas development, and may help identify previously unexplored biomarkers for clinical use. Electronic supplementary material The online version of this article (doi:10.1007/s00401-013-1132-7) contains supplementary material, which is available to authorized users.
- Published
- 2013