Colin Guillarmou, Sergiu Moroianu, Jean-Marc Schlenker, Département de Mathématiques et Applications - ENS Paris (DMA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), 'Simion Stoilow' Institute of Mathematics (IMAR), Romanian Academy of Sciences, Institut de Mathématiques de Toulouse UMR5219 (IMT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), ANR-10-BLAN-0105,ACG,Aspects Conformes de la Géométrie(2010), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Paris (ENS Paris)
We study the renormalized volume of asymptotically hyperbolic Einstein (AHE in short) manifolds $(M,g)$ when the conformal boundary $\pl M$ has dimension $n$ even. Its definition depends on the choice of metric $h_0$ on $\partial M$ in the conformal class at infinity determined by $g$, we denote it by ${\rm Vol}_R(M,g;h_0)$. We show that ${\rm Vol}_R(M,g;\cdot)$ is a functional admitting a "Polyakov type" formula in the conformal class $[h_0]$ and we describe the critical points as solutions of some non-linear equation $v_n(h_0)={\rm const}$, satisfied in particular by Einstein metrics. In dimension $n=2$, choosing extremizers in the conformal class amounts to uniformizing the surface, while in dimension $n=4$ this amounts to solving the $\sigma_2$-Yamabe problem. Next, we consider the variation of ${\rm Vol}_R(M,\cdot;\cdot)$ along a curve of AHE metrics $g^t$ with boundary metric $h_0^t$ and we use this to show that, provided conformal classes can be (locally) parametrized by metrics $h$ solving $v_n(h)=\int_{\pl M}v_n(h){\rm dvol}_{h}$, the set of ends of AHE manifolds (up to diffeomorphisms isotopic to Identity) can be viewed as a Lagrangian submanifold in the cotangent space to the space $\mc{T}(\pl M)$ of conformal structures on $\pl M$. We obtain as a consequence a higher-dimensional version of McMullen's quasifuchsian reciprocity. We finally show that conformal classes admitting negatively curved Einstein metrics are local minima for the renormalized volume for a warped product type filling., Comment: 58 pages, 2 figures