Back to Search Start Over

Bergman and Calderón projectors for Dirac operators

Authors :
Colin Guillarmou
Jinsung Park
Sergiu Moroianu
Département de Mathématiques et Applications - ENS Paris (DMA)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
School of Mathematics (KIAS Séoul)
Korea Institute for Advanced Study (KIAS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Guillarmou, Colin
Source :
The Journal of Geometric Analysis, The Journal of Geometric Analysis, Springer, 2014, 24 (1), pp.298-336, HAL
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

For a Dirac operator \(D_{\bar{g}}\) over a spin compact Riemannian manifold with boundary \((\bar{X},\bar{g})\), we give a new construction of the Calderon projector on \(\partial\bar{X}\) and of the associated Bergman projector on the space of L2 harmonic spinors on \(\bar{X}\), and we analyze their Schwartz kernels. Our approach is based on the conformal covariance of \(D_{\bar{g}}\) and the scattering theory for the Dirac operator associated with the complete conformal metric \(g=\bar{g}/\rho^{2}\) where ρ is a smooth function on \(\bar{X}\) which equals the distance to the boundary near \(\partial\bar{X}\). We show that \(\frac{1}{2}(\operatorname{Id}+\tilde{S}(0))\) is the orthogonal Calderon projector, where \(\tilde{S}(\lambda)\) is the holomorphic family in {ℜ(λ)≥0} of normalized scattering operators constructed in Guillarmou et al. (Adv. Math., 225(5):2464–2516, 2010), which are classical pseudo-differential of order 2λ. Finally, we construct natural conformally covariant odd powers of the Dirac operator on any compact spin manifold.

Details

Language :
English
ISSN :
10506926 and 1559002X
Database :
OpenAIRE
Journal :
The Journal of Geometric Analysis, The Journal of Geometric Analysis, Springer, 2014, 24 (1), pp.298-336, HAL
Accession number :
edsair.doi.dedup.....172cafff14d302dd71094ba213908c10