Back to Search Start Over

Chern–Simons line bundle on Teichmüller space

Authors :
Sergiu Moroianu
Colin Guillarmou
Département de Mathématiques et Applications - ENS Paris (DMA)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Geom. Topol. 18, no. 1 (2014), 327-377, Geometry and Topology, Geometry and Topology, Mathematical Sciences Publishers, 2014, 18, pp.327-377. ⟨10.2140/gt.2014.18.327⟩, Microlocal Methods in Mathematical Physics and Global Analysis ISBN: 9783034804653
Publication Year :
2014
Publisher :
MSP, 2014.

Abstract

36 pages. Minor modifications in the introduction.; International audience; Let $X$ be a non-compact geometrically finite hyperbolic $3$-manifold without cusps of rank $1$. The deformation space $\mc{H}$ of $X$ can be identified with the Teichmüller space $\mc{T}$ of the conformal boundary of $X$ as the graph of a section in $T^*\mc{T}$. We construct a Hermitian holomorphic line bundle $\mc{L}$ on $\mc{T}$, with curvature equal to a multiple of the Weil-Petersson symplectic form. This bundle has a canonical holomorphic section defined by $e^{\frac{1}{\pi}{\rm Vol}_R(X)+2\pi i\CS(X)}$ where ${\rm Vol}_R(X)$ is the renormalized volume of $X$ and $\CS(X)$ is the Chern-Simons invariant of $X$. This section is parallel on $\mc{H}$ for the Hermitian connection modified by the $(1,0)$ component of the Liouville form on $T^*\mc{T}$. As applications, we deduce that $\mc{H}$ is Lagrangian in $T^*\mc{T}$, and that ${\rm Vol}_R(X)$ is a Kähler potential for the Weil-Petersson metric on $\mc{T}$ and on its quotient by a certain subgroup of the mapping class group. For the Schottky uniformisation, we use a formula of Zograf to construct an explicit isomorphism of holomorphic Hermitian line bundles between $\mc{L}^{-1}$ and the sixth power of the determinant line bundle.

Details

Language :
English
ISBN :
978-3-0348-0465-3
ISSN :
14653060 and 13640380
ISBNs :
9783034804653
Database :
OpenAIRE
Journal :
Geom. Topol. 18, no. 1 (2014), 327-377, Geometry and Topology, Geometry and Topology, Mathematical Sciences Publishers, 2014, 18, pp.327-377. ⟨10.2140/gt.2014.18.327⟩, Microlocal Methods in Mathematical Physics and Global Analysis ISBN: 9783034804653
Accession number :
edsair.doi.dedup.....565e44a7372d51c737c8cac3248b7612
Full Text :
https://doi.org/10.2140/gt.2014.18.327⟩