Back to Search Start Over

Quasi-Fuchsian manifolds with particles

Authors :
Jean-Marc Schlenker
Sergiu Moroianu
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Differential Geometry, 83(1), 75-129. Bethlehem, PA: Lehigh University (2009)., Journal of Differential Geometry, Journal of Differential Geometry, 2009, 83 (1), pp.75-129, J. Differential Geom. 83, no. 1 (2009), 75-129
Publication Year :
2009

Abstract

We consider 3-dimensional hyperbolic cone-manifolds, singular along infinite lines, which are ``convex co-compact'' in a natural sense. We prove an infinitesimal rigidity statement when the angle around the singular lines is less than $\pi$: any first-order deformation changes either one of those angles or the conformal structure at infinity, with marked points corresponding to the endpoints of the singular lines. Moreover, any small variation of the conformal structure at infinity and of the singular angles can be achieved by a unique small deformation of the cone-manifold structure.<br />Comment: Now 48 pages, no figure. v2: new title, various corrections, results extended to include graph singularities ("interacting particles"). v3: various corrections/improvements, in particular thanks to comments by an anonymous referee

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of Differential Geometry, 83(1), 75-129. Bethlehem, PA: Lehigh University (2009)., Journal of Differential Geometry, Journal of Differential Geometry, 2009, 83 (1), pp.75-129, J. Differential Geom. 83, no. 1 (2009), 75-129
Accession number :
edsair.doi.dedup.....fdd20dced004ead63b40e090bff9631b