1. Knowledge-Based Matching of $n$-ary Tuples
- Author
-
Adrien Coulet, Pierre Monnin, Miguel Couceiro, Amedeo Napoli, Knowledge representation, reasonning (ORPAILLEUR), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Supported by the PractiKPharma project, founded by the French National Research Agency (ANR) under Grant ANR15-CE23-0028, by the IDEX 'Lorraine Université d’Excellence' (15-IDEX-0004), and by the Snowball Inria Associate Team., Mehwish Alam, Tanya Braun, Bruno Yun, Snowball Inria Associate Team, ANR-15-CE23-0028,PractiKPharma,Confrontation entre connaissances de l'état de l'art et connaissances extraites de dossiers patients en pharmacogénomique(2015), ANR-15-IDEX-0004,LUE,Isite LUE(2015), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Computer and information sciences ,Matching (statistics) ,Computer Science - Artificial Intelligence ,Computer science ,Ontology (information science) ,Domain (software engineering) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,03 medical and health sciences ,0302 clinical medicine ,Matching ,Semantic Web ,030304 developmental biology ,Alignment ,0303 health sciences ,Information retrieval ,business.industry ,Ontology ,Artificial Intelligence (cs.AI) ,Knowledge base ,n-ary Tuple ,Software agent ,030220 oncology & carcinogenesis ,Domain knowledge ,Order ,Tuple ,business - Abstract
International audience; An increasing number of data and knowledge sources are accessible by human and software agents in the expanding Semantic Web. Sources may differ in granularity or completeness, and thus be complementary. Consequently, they should be reconciled in order to unlock the full potential of their conjoint knowledge. In particular, units should be matched within and across sources, and their level of relatedness should be classified into equivalent, more specific, or similar. This task is challenging since knowledge units can be heterogeneously represented in sources (e.g., in terms of vocabularies). In this paper, we focus on matching $n$-ary tuples in a knowledge base with a rule-based methodology. To alleviate heterogeneity issues, we rely on domain knowledge expressed by ontologies. We tested our method on the biomedical domain of pharmacogenomics by searching alignments among 50,435 n-ary tuples from four different real-world sources. Results highlight noteworthy agreements and particularities within and across sources.
- Published
- 2020
- Full Text
- View/download PDF