Back to Search Start Over

Creating Fair Models of Atherosclerotic Cardiovascular Disease Risk

Authors :
Fatima Rodriguez
Ben J. Marafino
Nigam H. Shah
Latha Palaniappan
Stephen R. Pfohl
Adrien Coulet
Stanford Center for BioMedical Informatics Research (BMIR)
Stanford University
Knowledge representation, reasonning (ORPAILLEUR)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Stanford School of Medicine [Stanford]
Stanford Medicine
Stanford University-Stanford University
Snowball Inria Associate Team
Source :
AIES, AIES '19-Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES '19-Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, Jan 2019, Honolulu, United States. pp.271-278, ⟨10.1145/3306618.3314278⟩
Publication Year :
2019
Publisher :
ACM, 2019.

Abstract

International audience; Guidelines for the management of atherosclerotic cardiovascular disease (ASCVD) recommend the use of risk stratification models to identify patients most likely to benefit from cholesterol-lowering and other therapies. These models have differential performance across race and gender groups withinconsistent behavior across studies, potentially resulting in an inequitable distribution of beneficial therapy. In this work, we leverage adversarial learning and a large observational cohort extracted from electronic health records (EHRs) to develop a "fair" ASCVD risk prediction model with reducedvariability in error rates across groups. We empirically demonstrate that our approach is capable of aligning the distribution of risk predictions conditioned on the outcome across several groups simultaneously for models built from high-dimensional EHR data. We also discuss the relevance ofthese results in the context of the empirical trade-off between fairness and model performance.

Details

Database :
OpenAIRE
Journal :
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society
Accession number :
edsair.doi.dedup.....00e1913f8506ab8c3cdc7a8813039c84
Full Text :
https://doi.org/10.1145/3306618.3314278