Back to Search Start Over

Knowledge-Based Matching of $n$-ary Tuples

Authors :
Adrien Coulet
Pierre Monnin
Miguel Couceiro
Amedeo Napoli
Knowledge representation, reasonning (ORPAILLEUR)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Supported by the PractiKPharma project, founded by the French National Research Agency (ANR) under Grant ANR15-CE23-0028, by the IDEX 'Lorraine Université d’Excellence' (15-IDEX-0004), and by the Snowball Inria Associate Team.
Mehwish Alam
Tanya Braun
Bruno Yun
Snowball Inria Associate Team
ANR-15-CE23-0028,PractiKPharma,Confrontation entre connaissances de l'état de l'art et connaissances extraites de dossiers patients en pharmacogénomique(2015)
ANR-15-IDEX-0004,LUE,Isite LUE(2015)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Ontologies and Concepts in Mind and Machine-25th International Conference on Conceptual Structures, ICCS 2020, Bolzano, Italy, September 18–20, 2020, Proceedings, ICCS 2020-25th International Conference on Conceptual Structures, ICCS 2020-25th International Conference on Conceptual Structures, Sep 2020, Bolzano / Virtual, Italy. pp.48-56, ⟨10.1007/978-3-030-57855-8_4⟩, Ontologies and Concepts in Mind and Machine ISBN: 9783030578541, ICCS
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; An increasing number of data and knowledge sources are accessible by human and software agents in the expanding Semantic Web. Sources may differ in granularity or completeness, and thus be complementary. Consequently, they should be reconciled in order to unlock the full potential of their conjoint knowledge. In particular, units should be matched within and across sources, and their level of relatedness should be classified into equivalent, more specific, or similar. This task is challenging since knowledge units can be heterogeneously represented in sources (e.g., in terms of vocabularies). In this paper, we focus on matching $n$-ary tuples in a knowledge base with a rule-based methodology. To alleviate heterogeneity issues, we rely on domain knowledge expressed by ontologies. We tested our method on the biomedical domain of pharmacogenomics by searching alignments among 50,435 n-ary tuples from four different real-world sources. Results highlight noteworthy agreements and particularities within and across sources.

Details

Language :
English
ISBN :
978-3-030-57854-1
ISBNs :
9783030578541
Database :
OpenAIRE
Journal :
Ontologies and Concepts in Mind and Machine-25th International Conference on Conceptual Structures, ICCS 2020, Bolzano, Italy, September 18–20, 2020, Proceedings, ICCS 2020-25th International Conference on Conceptual Structures, ICCS 2020-25th International Conference on Conceptual Structures, Sep 2020, Bolzano / Virtual, Italy. pp.48-56, ⟨10.1007/978-3-030-57855-8_4⟩, Ontologies and Concepts in Mind and Machine ISBN: 9783030578541, ICCS
Accession number :
edsair.doi.dedup.....581728cdce500d924f749455b80806a3
Full Text :
https://doi.org/10.1007/978-3-030-57855-8_4⟩