25 results on '"R. Tiedra de Aldecoa"'
Search Results
2. Spectral and Scattering Properties of Quantum Walks on Homogenous Trees of Odd Degree
- Author
-
R. Tiedra de Aldecoa
- Subjects
Physics ,Nuclear and High Energy Physics ,Pure mathematics ,Degree (graph theory) ,Spectrum (functional analysis) ,Hilbert space ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Functional Analysis (math.FA) ,Mathematics - Functional Analysis ,Mathematics - Spectral Theory ,symbols.namesake ,Operator (computer programming) ,Unit circle ,FOS: Mathematics ,symbols ,Quantum walk ,47A10, 47A40, 81Q10, 81Q12 ,Spectral Theory (math.SP) ,Finite set ,Mathematical Physics ,Eigenvalues and eigenvectors - Abstract
For unitary operators $U_0,U$ in Hilbert spaces ${\mathcal H}_0,{\mathcal H}$ and identification operator $J:{\mathcal H}_0\to{\mathcal H}$, we present results on the derivation of a Mourre estimate for $U$ starting from a Mourre estimate for $U_0$ and on the existence and completeness of the wave operators for the triple $(U,U_0,J)$. As an application, we determine spectral and scattering properties of a class of anisotropic quantum walks on homogenous trees of odd degree with evolution operator $U$. In particular, we establish a Mourre estimate for $U$, obtain a class of locally $U$-smooth operators, and prove that the spectrum of $U$ covers the whole unit circle and is purely absolutely continuous, outside possibly a finite set where $U$ may have eigenvalues of finite multiplicity. We also show that (at least) three different choices of free evolution operators $U_0$ are possible for the proof of the existence and completeness of the wave operators., Comment: Revised version (with new title and more general results) to appear in Annales Henri Poincar\'e
- Published
- 2021
- Full Text
- View/download PDF
3. Scattering Operator and Wave Operators for 2D Schrödinger Operators with Threshold Obstructions
- Author
-
R. Tiedra de Aldecoa, Serge Richard, and L. Zhang
- Subjects
Computational Mathematics ,symbols.namesake ,Computational Theory and Mathematics ,Applied Mathematics ,Scattering operator ,symbols ,Operator theory ,Type (model theory) ,Schrödinger's cat ,Mathematical physics ,Mathematics - Abstract
We determine the low-energy behaviour of the scattering operator of two-dimensional Schrodinger operators with any type of obstructions at 0-energy. We also derive explicit formulas for the wave operators in the absence of p-resonances, and outline in this case a topological version of Levinson’s theorem.
- Published
- 2021
- Full Text
- View/download PDF
4. DEGREE, MIXING, AND ABSOLUTELY CONTINUOUS SPECTRUM OF COCYCLES WITH VALUES IN COMPACT LIE GROUPS
- Author
-
R. Tiedra de Aldecoa
- Subjects
Physics ,Pure mathematics ,Degree (graph theory) ,Spectrum (functional analysis) ,Lie group ,Absolute continuity ,Mixing (physics) - Published
- 2018
- Full Text
- View/download PDF
5. Quantum walks with an anisotropic coin II: scattering theory
- Author
-
Akito Suzuki, R. Tiedra de Aldecoa, and Serge Richard
- Subjects
Physics ,Quantum Physics ,Scattering ,Complex system ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,01 natural sciences ,Unitary state ,Mathematics - Spectral Theory ,Theoretical physics ,Operator (computer programming) ,Mathematics::Probability ,0103 physical sciences ,FOS: Mathematics ,Quantum walk ,010307 mathematical physics ,Limit (mathematics) ,Scattering theory ,Quantum Physics (quant-ph) ,010306 general physics ,Anisotropy ,Spectral Theory (math.SP) ,Mathematical Physics - Abstract
We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we consider include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary operators in a two-Hilbert spaces setting, which is of independent interest., 23 pages
- Published
- 2018
- Full Text
- View/download PDF
6. Spectral and scattering properties at thresholds for the Laplacian in a half-space with a periodic boundary condition
- Author
-
Serge Richard, R. Tiedra de Aldecoa, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Facultad de Matemáticas [Santiago de Chile], Pontificia Universidad Católica de Chile (UC), Richard, Serge, Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Scattering ,Applied Mathematics ,resolvent expansions ,010102 general mathematics ,Mathematical analysis ,wave operators ,2010 MSC: 47A10, B1U35, 35J10 ,Half-space ,01 natural sciences ,Matrix (mathematics) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Periodic boundary conditions ,Thresholds ,010307 mathematical physics ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,0101 mathematics ,Laplace operator ,Analysis ,scattering matrix ,Resolvent ,Mathematics - Abstract
International audience; For the scattering system given by the Laplacian in a half-space with a periodic boundary condition,we derive resolvent expansions at embedded thresholds, we prove the continuity of the scatteringmatrix, and we establish new formulas for the wave operators.
- Published
- 2017
- Full Text
- View/download PDF
7. Discrete Laplacian in a half-space with a periodic surface potential I: Resolvent expansions, scattering matrix, and wave operators
- Author
-
H. S. Nguyen, S. Richard, R. Tiedra de Aldecoa, Nagoya University, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Pontificia Universidad Católica de Chile (UC), Richard, Serge, Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,General Mathematics ,resolvent expansions ,wave operators ,thresholds ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,discrete Laplacian ,scattering matrix - Abstract
We present a detailed study of the scattering system given by the Neumann Laplacian on the discrete half-space perturbed by a periodic potential at the boundary. We derive asymptotic resolvent expansions at thresholds and eigenvalues, we prove the continuity of the scattering matrix, and we establish new formulas for the wave operators. Along the way, our analysis puts into evidence a surprising relation between some properties of the potential, like the parity of its period, and the behaviour of the integral kernel of the wave operators.
- Published
- 2020
8. Spectral and scattering theory of one-dimensional coupled photonic crystals
- Author
-
G de Nittis, R. Tiedra de Aldecoa, Serge Richard, Massimo Moscolari, Pontificia Universidad Católica de Chile (UC), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Light transmission ,Spectral theory ,81Q10, 47A40, 47B47, 46N50, 35Q61 ,business.industry ,010102 general mathematics ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,01 natural sciences ,Mathematics - Spectral Theory ,Optics ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,FOS: Mathematics ,010307 mathematical physics ,Scattering theory ,0101 mathematics ,business ,Spectral Theory (math.SP) ,Mathematical Physics ,Photonic crystal - Abstract
We study the spectral and scattering theory of light transmission in a system consisting of two asymptotically periodic waveguides, also known as one-dimensional photonic crystals, coupled by a junction. Using analyticity techniques and commutator methods in a two-Hilbert spaces setting, we determine the nature of the spectrum and prove the existence and completeness of the wave operators of the system., Comment: 31 pages, 1 figure. Keywords: Spectral theory, scattering theory, Maxwell operators, commutator methods. [v3] revised version to appear in Reviews in Mathematical Physics
- Published
- 2020
9. Stationary scattering theory for unitary operators with an application to quantum walks
- Author
-
R. Tiedra de Aldecoa
- Subjects
Scattering ,010102 general mathematics ,Hilbert space ,01 natural sciences ,Unitary state ,Matrix (mathematics) ,symbols.namesake ,Operator (computer programming) ,0103 physical sciences ,symbols ,Quantum walk ,010307 mathematical physics ,Scattering theory ,0101 mathematics ,Representation (mathematics) ,Analysis ,Mathematical physics ,Mathematics - Abstract
We present a general account on the stationary scattering theory for unitary operators in a two-Hilbert spaces setting. For unitary operators U 0 , U in Hilbert spaces H 0 , H and an identification operator J : H 0 → H , we give the definitions and collect properties of the stationary wave operators, the strong wave operators, the scattering operator and the scattering matrix for the triple ( U , U 0 , J ) . In particular, we exhibit conditions under which the stationary wave operators and the strong wave operators exist and coincide, and we derive representation formulas for the stationary wave operators and the scattering matrix. As an application, we show that these representation formulas are satisfied for a class of anisotropic quantum walks recently introduced in the literature.
- Published
- 2020
- Full Text
- View/download PDF
10. Quantum time delay for unitary operators: general theory
- Author
-
Diomba Sambou and R. Tiedra de Aldecoa
- Subjects
010102 general mathematics ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Quantum spacetime ,01 natural sciences ,Unitary state ,Algebra ,Mathematics - Spectral Theory ,General theory ,0103 physical sciences ,FOS: Mathematics ,46N50, 47A40, 81Q10, 81Q12 ,010307 mathematical physics ,0101 mathematics ,Spectral Theory (math.SP) ,Mathematical Physics ,Mathematics - Abstract
We present a suitable framework for the definition of quantum time delay in terms of sojourn times for unitary operators in a two-Hilbert spaces setting. We prove that this time delay defined in terms of sojourn times (time-dependent definition) exists and coincides with the expectation value of a unitary analogue of the Eisenbud-Wigner time delay operator (time-independent definition). Our proofs rely on a new summation formula relating localisation operators to time operators and on various tools from functional analysis such as Mackey's imprimititvity theorem, Trotter-Kato Formula and commutator methods for unitary operators. Our approach is general and model-independent., 38 pages, to appear in Rev. Math. Phys
- Published
- 2018
11. The absolute continuous spectrum of skew products of compact Lie groups
- Author
-
R. Tiedra de Aldecoa
- Subjects
Combinatorics ,Commutator ,Unitary representation ,Degree (graph theory) ,Continuous function (set theory) ,General Mathematics ,Continuous spectrum ,Spectrum (functional analysis) ,Lie group ,Lie derivative ,Mathematics - Abstract
Let X and G be compact Lie groups, F 1: X → X the time-one map of a C ∞ measure-preserving flow, ϕ: X → G a continuous function and π a finite-dimensional irreducible unitary representation of G. Then, we prove that the skew products $${T_\phi }:X \times G \to X \times G,(x,g) \mapsto ({F_1}(x),g\phi (x))$$ , have purely absolutely continuous spectrum in the subspace associated to π if π po ϕ has a Dini-continuous Lie derivative along the flow and if a matrix multiplication operator related to the topological degree of πpoϕ has nonzero determinant. This result provides a simple, but general, criterion for the presence of an absolutely continuous component in the spectrum of skew products of compact Lie groups. As an illustration, we consider the cases where F 1 is an ergodic translation on T d and X × G = T d × T dʹ , X × G = T d × SU(2) and X × G = T d × U(2). Our proofs rely on recent results on positive commutator methods for unitary operators.
- Published
- 2015
- Full Text
- View/download PDF
12. Quantum walks with an anisotropic coin I: spectral theory
- Author
-
Serge Richard, R. Tiedra de Aldecoa, and Akito Suzuki
- Subjects
Physics ,Commutator ,Spectral theory ,Essential spectrum ,Continuous spectrum ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Unitary operators ,Mathematical Physics (math-ph) ,Commutator methods ,01 natural sciences ,Unitary state ,Mathematics - Spectral Theory ,Operator (computer programming) ,0103 physical sciences ,FOS: Mathematics ,Quantum walk ,010307 mathematical physics ,010306 general physics ,Spectral Theory (math.SP) ,Eigenvalues and eigenvectors ,Mathematical Physics ,Mathematical physics ,Quantum walks - Abstract
We perform the spectral analysis of the evolution operator U of quantum walks with an anisotropic coin, which include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. In particular, we determine the essential spectrum of U, we show the existence of locally U-smooth operators, we prove the discreteness of the eigenvalues of U outside the thresholds, and we prove the absence of singular continuous spectrum for U. Our analysis is based on new commutator methods for unitary operators in a two-Hilbert spaces setting, which are of independent interest., 26 pages
- Published
- 2017
13. New Expressions for the Wave Operators of Schrödinger Operators in $${\mathbb{R}^3}$$ R 3
- Author
-
Serge Richard and R. Tiedra de Aldecoa
- Subjects
Physics ,Generator (category theory) ,media_common.quotation_subject ,010102 general mathematics ,Complex system ,Statistical and Nonlinear Physics ,Infinity ,01 natural sciences ,Resonance (particle physics) ,symbols.namesake ,0103 physical sciences ,symbols ,010307 mathematical physics ,0101 mathematics ,Mathematical Physics ,Schrödinger's cat ,Eigenvalues and eigenvectors ,Mathematical physics ,media_common - Abstract
We prove new and explicit formulas for the wave operators of Schrodinger operators in $${\mathbb{R}^3}$$ . These formulas put into light the very special role played by the generator of dilations and validate the topological approach of Levinson’s theorem introduced in a previous publication. Our results hold for general (not spherically symmetric) potentials decaying fast enough at infinity, without any assumption on the absence of eigenvalue or resonance at 0-energy.
- Published
- 2013
- Full Text
- View/download PDF
14. Resolvent expansions and continuity of the scattering matrix at embedded thresholds: the case of quantum waveguides
- Author
-
Serge Richard, R. Tiedra de Aldecoa, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Facultad de Matemáticas [Santiago de Chile], Pontificia Universidad Católica de Chile (UC), Richard, Serge, Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Scattering ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,resolvent expansions ,quantum waveguides ,01 natural sciences ,Inversion (discrete mathematics) ,Matrix (mathematics) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Thresholds ,010307 mathematical physics ,0101 mathematics ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Quantum ,Eigenvalues and eigenvectors ,Resolvent ,scattering matrix - Abstract
27; International audience; We present an inversion formula which can be used to obtain resolvent expansions near embedded thresholds. As an application, we prove for a class of quantum waveguides the absence of accumulation of eigenvalues and the continuity of the scattering matrix at all thresholds.
- Published
- 2016
15. Spectral analysis for convolution operators on locally compact groups
- Author
-
R. Tiedra de Aldecoa, Marius Mantoiu, 'Simion Stoilow' Institute of Mathematics (IMAR), Romanian Academy of Sciences, Analyse, Géométrie et Modélisation (AGM - UMR 8088), and CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,01 natural sciences ,law.invention ,Convolution ,convolution operator ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,law ,0103 physical sciences ,Point (geometry) ,Locally compact space ,locally compact group ,0101 mathematics ,Mathematics ,Discrete mathematics ,singular spectrum ,010102 general mathematics ,Spectrum (functional analysis) ,Commutator (electric) ,positive commutator ,Locally compact group ,Linear subspace ,point spectrum ,34L05 ,81Q10 ,44A35 ,22D05 ,Kernel (image processing) ,010307 mathematical physics ,Analysis - Abstract
14 pages; Journal of Functional Analysis; International audience; We consider operators $H_\mu$ of convolution with measures $\mu$ on locally compact groups. We characterize the spectrum of $H_\mu$ by constructing auxiliary operators whose kernel contain the pure point and singular subspaces of $H_\mu$, respectively. The proofs rely on commutator methods.
- Published
- 2007
- Full Text
- View/download PDF
16. Commutator criteria for strong mixing
- Author
-
R. Tiedra de Aldecoa
- Subjects
Pure mathematics ,General Mathematics ,FOS: Physical sciences ,Dynamical Systems (math.DS) ,01 natural sciences ,Unitary state ,law.invention ,Mathematics - Spectral Theory ,37A25, 58J51, 81Q10 ,symbols.namesake ,law ,Unitary group ,FOS: Mathematics ,0101 mathematics ,Mathematics - Dynamical Systems ,Spectral Theory (math.SP) ,Mixing (physics) ,Mathematical Physics ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Hilbert space ,Lie group ,Commutator (electric) ,Mathematical Physics (math-ph) ,Functional Analysis (math.FA) ,010101 applied mathematics ,Mathematics - Functional Analysis ,Horocycle ,symbols ,Adjacency list - Abstract
We present new criteria, based on commutator methods, for the strong mixing property of discrete flows $\{U^N\}_{N\in\mathbb Z}$ and continuous flows $\{{\rm e}^{-itH}\}_{t\in\mathbb R}$ induced by unitary operators $U$ and self-adjoint operators $H$ in a Hilbert space $\mathcal H$. Our approach put into evidence a general definition for the topological degree of the curves $N\mapsto U^N$ and $t\mapsto{\rm e}^{-itH}$ in the unitary group of $\mathcal H$. Among other examples, our results apply to skew products of compact Lie groups, time changes of horocycle flows and adjacency operators on graphs., 15 pages, 1 figure
- Published
- 2014
17. A few results on Mourre theory in a two-Hilbert spaces setting
- Author
-
R. Tiedra de Aldecoa, Serge Richard, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Facultad de Matemáticas [Santiago de Chile], Pontificia Universidad Católica de Chile (UC), and Richard, Serge
- Subjects
Pure mathematics ,01 natural sciences ,symbols.namesake ,Von Neumann's theorem ,Mourre theory ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Completeness (order theory) ,0103 physical sciences ,two-Hilbert spaces ,0101 mathematics ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Mathematical Physics ,Mathematics ,Discrete mathematics ,scattering theory ,Algebra and Number Theory ,010102 general mathematics ,Hilbert space ,Operator theory ,Mathematics::Spectral Theory ,Compact operator on Hilbert space ,symbols ,010307 mathematical physics ,Scattering theory ,Analysis ,conjugate operator - Abstract
We introduce a natural framework for dealing with Mourre theory in an abstract two-Hilbert spaces setting. In particular a Mourre estimate for a pair of self-adjoint operators \((H,A)\) is deduced from a similar estimate for a pair of self-adjoint operators \((H_0,A_0)\) acting in an auxiliary Hilbert space. A new criterion for the completeness of the wave operators in a two-Hilbert spaces setting is also presented.
- Published
- 2013
18. A New Formula Relating Localisation Operators to Time Operators
- Author
-
Serge Richard and R. Tiedra de Aldecoa
- Subjects
Discrete mathematics ,Operator (computer programming) ,Weak operator topology ,Nuclear operator ,Finite-rank operator ,Operator theory ,Compact operator ,Compact operator on Hilbert space ,Quasinormal operator ,Mathematics - Abstract
We consider in a Hilbert space a self-adjoint operator H and a family Φ ≡ (Φ1,…,Φd) of mutually commuting self-adjoint operators.Unde r some regularity properties of H with respect to Φ, we propose two new formulae for a time operator for H and prove their equality.O ne of the expressions is based on the time evolution of an abstract localisation operator defined in terms of Φ while the other one corresponds to a stationary formula.Under the same assumptions, we also conduct the spectral analysis of H by using the method of the conjugate operator. Among other examples, our theory applies to Friedrichs Hamiltonians, Stark Hamiltonians, some Jacobi operators, the Dirac operator, convolution operators on locally compact groups, pseudodifferential operators, adjacency operators on graphs and direct integral operators.
- Published
- 2012
- Full Text
- View/download PDF
19. Commutator methods for the spectral analysis of uniquely ergodic dynamical systems
- Author
-
R. Tiedra de Aldecoa
- Subjects
Pure mathematics ,Mathematics::Dynamical Systems ,Dynamical systems theory ,General Mathematics ,FOS: Physical sciences ,Dynamical Systems (math.DS) ,Lebesgue integration ,law.invention ,Mathematics - Spectral Theory ,symbols.namesake ,law ,FOS: Mathematics ,Ergodic theory ,Mathematics - Dynamical Systems ,Spectral Theory (math.SP) ,37A30, 37C10, 37C40, 37D40, 58J51, 81Q10 ,Mathematical Physics ,Mathematics ,Applied Mathematics ,Spectrum (functional analysis) ,Skew ,Commutator (electric) ,Mathematical Physics (math-ph) ,Absolute continuity ,Horocycle ,symbols - Abstract
We present a method, based on commutator methods, for the spectral analysis of uniquely ergodic dynamical systems. When applicable, it leads to the absolute continuity of the spectrum of the corresponding unitary operators. As an illustration, we consider time changes of horocycle flows, skew products over translations and Furstenberg transformations. For time changes of horocycle flows, we obtain absolute continuity under assumptions weaker than the ones to be found in the literature., Comment: corrections and simplifications in section 4
- Published
- 2012
- Full Text
- View/download PDF
20. A formula relating sojourn times to the time of arrival in hamiltonian dynamics
- Author
-
Antoine Gournay and R. Tiedra de Aldecoa
- Subjects
Statistics and Probability ,Hamiltonian mechanics ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Observable ,Wave equation ,Poisson bracket ,symbols.namesake ,Nonlinear system ,Central force ,Modeling and Simulation ,Quantum mechanics ,symbols ,Hamiltonian (quantum mechanics) ,Quantum ,Mathematical Physics ,Mathematics ,Mathematical physics - Abstract
We consider on a manifold M equipped with a Poisson bracket { ?, ?} a Hamiltonian H with complete flow and a family ? ? (?1, ?, ?d) of abstract position observables satisfying the condition {{?j, H}, H} = 0 for each j. Under these assumptions, we prove a new formula relating sojourn times in dilated regions defined in terms of ? to the time of arrival of classical orbits. The correspondence between this formula and a formula established recently in the framework of quantum mechanics is put into evidence. Among other examples, our theory applies to Stark Hamiltonians, homogeneous Hamiltonians, purely kinetic Hamiltonians, the repulsive harmonic potential, central force systems, the Poincar? ball model, the wave equation, the nonlinear Schr?dinger equation, the Korteweg?de Vries equation and quantum Hamiltonians defined via expectation values.
- Published
- 2012
21. Time delay is a common feature of quantum scattering theory
- Author
-
Serge Richard, R. Tiedra de Aldecoa, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Facultad de Matemáticas [Santiago de Chile], Pontificia Universidad Católica de Chile (UC), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Applied Mathematics ,Scattering theory ,010102 general mathematics ,01 natural sciences ,Identity (music) ,Feature (computer vision) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,010307 mathematical physics ,Statistical physics ,0101 mathematics ,Analysis ,Time delay ,Mathematics - Abstract
International audience; We prove that the existence of time delay defined in terms of sojourn times, as well as its identity with Eisenbud-Wigner time delay, is a common feature of two-Hilbert spaces quantum scattering theory. All statements are model-independent.
- Published
- 2012
- Full Text
- View/download PDF
22. Spectral analysis and time-dependent scattering theory on manifolds with asymptotically cylindrical ends
- Author
-
R. Tiedra de Aldecoa, Serge Richard, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Facultad de Matemáticas [Santiago de Chile], Pontificia Universidad Católica de Chile (UC), Richard, Serge, Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematics - Differential Geometry ,FOS: Physical sciences ,Perturbation (astronomy) ,01 natural sciences ,Mathematics - Spectral Theory ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Scattering operator ,FOS: Mathematics ,Spectral analysis ,0101 mathematics ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Manifolds ,Spectral Theory (math.SP) ,Mathematical Physics ,Resolvent ,Physics ,scattering theory ,Scattering ,010102 general mathematics ,Mathematical analysis ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,spectral analysis ,Differential Geometry (math.DG) ,010307 mathematical physics ,Scattering theory ,conjugate operator - Abstract
We review the spectral analysis and the time-dependent approach of scattering theory for manifolds with asymptotically cylindrical ends. For the spectral analysis, higher order resolvent estimates are obtained via Mourre theory for both short-range and long-range behaviors of the metric and the perturbation at infinity. For the scattering theory, the existence and asymptotic completeness of the wave operators is proved in a two-Hilbert spaces setting. A stationary formula as well as mapping properties for the scattering operator are derived. The existence of time delay and its equality with the Eisenbud-Wigner time delay is finally presented. Our analysis mainly differs from the existing literature on the choice of a simpler comparison dynamics as well as on the complementary use of time-dependent and stationary scattering theories., 30 pages
- Published
- 2011
23. Spectral analysis for adjacency operators on graphs
- Author
-
R. Tiedra de Aldecoa, Serge Richard, Marius Mantoiu, Laboratoire de Mathématiques d'Orsay (LM-Orsay), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Continuous spectrum ,FOS: Physical sciences ,Mathematical proof ,01 natural sciences ,Operator (computer programming) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,0101 mathematics ,Eigenvalues and eigenvectors ,Mathematical Physics ,Discrete mathematics ,singular spectrum ,010102 general mathematics ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,positive commutator ,graph ,Classical XY model ,Kernel (algebra) ,05C20, 47A10, 47B39 ,adjacency operator ,Adjacency list ,010307 mathematical physics ,Subspace topology - Abstract
We put into evidence graphs with adjacency operator whose singular subspace is prescribed by the kernel of an auxiliary operator. In particular, for a family of graphs called admissible, the singular continuous spectrum is absent and there is at most an eigenvalue located at the origin. Among other examples, the one-dimensional XY model of solid-state physics is covered. The proofs rely on commutators methods., 16 pages, 9 figures
- Published
- 2006
- Full Text
- View/download PDF
24. Generalized definition of time delay in scattering theory
- Author
-
R. Tiedra de Aldecoa, Christian Gérard, and Tiedra De Aldecoa, Rafael
- Subjects
Physics ,Scattering ,35J10 ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Invariant (physics) ,81U20 ,81Q10 ,46N50 ,Scattering theory ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Mathematical Physics ,Mathematical physics - Abstract
We advocate for the systematic use of a symmetrized definition of time delay in scattering theory. In two-body scattering processes, we show that the symmetrized time delay exists for arbitrary dilated spatial regions symmetric with respect to the origin. It is equal to the usual time delay plus a new contribution, which vanishes in the case of spherical spatial regions. We also prove that the symmetrized time delay is invariant under an appropriate mapping of time reversal. These results are also discussed in the context of classical scattering theory., Comment: 18 pages
- Published
- 2006
- Full Text
- View/download PDF
25. TIME DELAY AND CALABI INVARIANT IN CLASSICAL SCATTERING THEORY
- Author
-
Antoine Gournay and R. Tiedra de Aldecoa
- Subjects
Physics ,Hamiltonian mechanics ,Scattering ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Invariant (physics) ,Expression (mathematics) ,symbols.namesake ,Poincaré conjecture ,symbols ,Scattering theory ,37J99, 70H99, 37N05 ,Mathematics::Symplectic Geometry ,Mathematical Physics ,Mathematical physics ,Symplectic manifold - Abstract
We define, prove the existence and obtain explicit expressions for classical time delay defined in terms of sojourn times for abstract scattering pairs (H_0,H) on a symplectic manifold. As a by-product, we establish a classical version of the Eisenbud-Wigner formula of quantum mechanics. Using recent results of V. Buslaev and A. Pushnitski on the scattering matrix in Hamiltonian mechanics, we also obtain an explicit expression for the derivative of the Calabi invariant of the Poincar\'e scattering map. Our results are applied to dispersive Hamiltonians, to a classical particle in a tube and to Hamiltonians on the Poincar\'e ball., Comment: 22 pages
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.