Back to Search
Start Over
Spectral analysis for convolution operators on locally compact groups
- Source :
- Journal of Functional Analysis, Journal of Functional Analysis, Elsevier, 2007, ⟨10.1016/j.jfa.2007.09.001⟩
- Publication Year :
- 2007
- Publisher :
- Elsevier BV, 2007.
-
Abstract
- 14 pages; Journal of Functional Analysis; International audience; We consider operators $H_\mu$ of convolution with measures $\mu$ on locally compact groups. We characterize the spectrum of $H_\mu$ by constructing auxiliary operators whose kernel contain the pure point and singular subspaces of $H_\mu$, respectively. The proofs rely on commutator methods.
- Subjects :
- [PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
01 natural sciences
law.invention
Convolution
convolution operator
[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]
law
0103 physical sciences
Point (geometry)
Locally compact space
locally compact group
0101 mathematics
Mathematics
Discrete mathematics
singular spectrum
010102 general mathematics
Spectrum (functional analysis)
Commutator (electric)
positive commutator
Locally compact group
Linear subspace
point spectrum
34L05
81Q10
44A35
22D05
Kernel (image processing)
010307 mathematical physics
Analysis
Subjects
Details
- ISSN :
- 00221236 and 10960783
- Volume :
- 253
- Database :
- OpenAIRE
- Journal :
- Journal of Functional Analysis
- Accession number :
- edsair.doi.dedup.....bf68d5483107493ea38788ffdfbd2432
- Full Text :
- https://doi.org/10.1016/j.jfa.2007.09.001