Back to Search Start Over

Spectral analysis and time-dependent scattering theory on manifolds with asymptotically cylindrical ends

Authors :
R. Tiedra de Aldecoa
Serge Richard
Probabilités, statistique, physique mathématique (PSPM)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Facultad de Matemáticas [Santiago de Chile]
Pontificia Universidad Católica de Chile (UC)
Richard, Serge
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
REVIEWS IN MATHEMATICAL PHYSICS, Artículos CONICYT, CONICYT Chile, instacron:CONICYT, Reviews in Mathematical Physics, Reviews in Mathematical Physics, World Scientific Publishing, 2013, 25, pp.1350003-1-1350003-40
Publication Year :
2011

Abstract

We review the spectral analysis and the time-dependent approach of scattering theory for manifolds with asymptotically cylindrical ends. For the spectral analysis, higher order resolvent estimates are obtained via Mourre theory for both short-range and long-range behaviors of the metric and the perturbation at infinity. For the scattering theory, the existence and asymptotic completeness of the wave operators is proved in a two-Hilbert spaces setting. A stationary formula as well as mapping properties for the scattering operator are derived. The existence of time delay and its equality with the Eisenbud-Wigner time delay is finally presented. Our analysis mainly differs from the existing literature on the choice of a simpler comparison dynamics as well as on the complementary use of time-dependent and stationary scattering theories.<br />30 pages

Details

Language :
English
ISSN :
0129055X
Database :
OpenAIRE
Journal :
REVIEWS IN MATHEMATICAL PHYSICS, Artículos CONICYT, CONICYT Chile, instacron:CONICYT, Reviews in Mathematical Physics, Reviews in Mathematical Physics, World Scientific Publishing, 2013, 25, pp.1350003-1-1350003-40
Accession number :
edsair.doi.dedup.....dc3e1fc576c44ea5c0799f88511f22a0