124 results on '"Pierre-François, Loos"'
Search Results
2. Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo
- Author
-
Anthony Scemama, Michel Caffarel, Anouar Benali, Denis Jacquemin, and Pierre-François Loos
- Subjects
Quantum Monte Carlo ,Fixed-node error ,Excited states ,Pseudopotential ,Effective core potential ,Chemistry ,QD1-999 - Abstract
Due to their diverse nature, the faithful description of excited states within electronic structure theory methods remains one of the grand challenges of modern theoretical chemistry. Quantum Monte Carlo (QMC) methods have been applied very successfully to ground state properties but still remain generally less effective than other non-stochastic methods for electronically excited states. Nonetheless, we have recently reported accurate excitation energies for small organic molecules at the fixed-node diffusion Monte Carlo (FN-DMC) within a Jastrow-free QMC protocol relying on a deterministic and systematic construction of nodal surfaces using the selected configuration interaction (sCI) algorithm known as CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively). Albeit highly accurate, these all-electron calculations are computationally expensive due to the presence of core electrons. One very popular approach to remove these chemically-inert electrons from the QMC simulation is to introduce pseudopotentials (also known as effective core potentials). Taking the water molecule as an example, we investigate the influence of Burkatzki-Filippi-Dolg (BFD) pseudopotentials and their associated basis sets on vertical excitation energies obtained with sCI and FN-DMC methods. Although these pseudopotentials are known to be relatively safe for ground state properties, we evidence that special care may be required if one strives for highly accurate vertical transition energies. Indeed, comparing all-electron and valence-only calculations, we show that using pseudopotentials with the associated basis sets can induce differences of the order of 0.05 eV on the excitation energies. Fortunately, a reasonable estimate of this shift can be estimated at the sCI level.
- Published
- 2019
- Full Text
- View/download PDF
3. State-Specific Configuration Interaction for Excited States
- Author
-
Fábris Kossoski, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and European Project: 863481,PTEROSOR
- Subjects
Chemical Physics (physics.chem-ph) ,Nuclear Theory (nucl-th) ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons ,Nuclear Theory ,Strongly Correlated Electrons (cond-mat.str-el) ,Physics - Chemical Physics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Physical and Theoretical Chemistry ,Computer Science Applications - Abstract
We introduce and benchmark a systematically improvable route for excited-state calculations, state-specific configuration interaction ($\Delta$CI), \alert{which is a particular realization of multiconfigurational self-consistent field and multireference configuration interaction.} Starting with a reference built from optimized configuration state functions, separate CI calculations are performed for each targeted state (hence state-specific orbitals and determinants). Accounting for single and double excitations produces the $\Delta$CISD model, which can be improved with second-order Epstein-Nesbet perturbation theory ($\Delta$CISD+EN2) or a posteriori Davidson corrections ($\Delta$CISD+Q). These models were gauged against a vast and diverse set of 294 reference excitation energies. We have found that $\Delta$CI is significantly more accurate than standard ground-state-based CI, whereas close performances were found between $\Delta$CISD and EOM-CC2, and between $\Delta$CISD+EN2 and EOM-CCSD. For larger systems, $\Delta$CISD+Q delivers more accurate results than EOM-CC2 and EOM-CCSD. The $\Delta$CI route can handle challenging multireference problems, singly- and doubly-excited states, from closed- and open-shell species, with overall comparable accuracy, and thus represents a promising alternative to more established methodologies. In its current form, however, it is only reliable for relatively low-lying excited states., Comment: 14 pages, 3 figures (supplementary information available)
- Published
- 2023
4. Exploring new exchange-correlation kernels in the Bethe–Salpeter equation: A study of the asymmetric Hubbard dimer
- Author
-
Roberto Orlando, Pina Romaniello, and Pierre-François Loos
- Published
- 2023
5. Diffusion Monte Carlo using domains in configuration space
- Author
-
Roland Assaraf, Emmanuel Giner, Vijay Gopal Chilkuri, Pierre-François Loos, Anthony Scemama, Michel Caffarel, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Systèmes étendus et magnétisme (LCPQ) (SEM), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), European Project: 863481,PTEROSOR, and European Project: 952165,H2020,H2020-INFRAEDI-2019-1,Trex(2020)
- Subjects
Chemical Physics (physics.chem-ph) ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Physics - Chemical Physics ,FOS: Physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
The sampling of the configuration space in diffusion Monte Carlo (DMC) is done using walkers moving randomly. In a previous work on the Hubbard model [\href{https://doi.org/10.1103/PhysRevB.60.2299}{Assaraf et al.~Phys.~Rev.~B \textbf{60}, 2299 (1999)}], it was shown that the probability for a walker to stay a certain amount of time in the same state obeys a Poisson law and that the on-state dynamics can be integrated out exactly, leading to an effective dynamics connecting only different states. Here, we extend this idea to the general case of a walker trapped within domains of arbitrary shape and size. The equations of the resulting effective stochastic dynamics are derived. The larger the average (trapping) time spent by the walker within the domains, the greater the reduction in statistical fluctuations. A numerical application to the Hubbard model is presented. Although this work presents the method for finite linear spaces, it can be generalized without fundamental difficulties to continuous configuration spaces., 14 pages, 4 figures
- Published
- 2023
6. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science
- Author
-
Andrew M. Teale, Trygve Helgaker, Andreas Savin, Carlo Adamo, Bálint Aradi, Alexei V. Arbuznikov, Paul W. Ayers, Evert Jan Baerends, Vincenzo Barone, Patrizia Calaminici, Eric Cancès, Emily A. Carter, Pratim Kumar Chattaraj, Henry Chermette, Ilaria Ciofini, T. Daniel Crawford, Frank De Proft, John F. Dobson, Claudia Draxl, Thomas Frauenheim, Emmanuel Fromager, Patricio Fuentealba, Laura Gagliardi, Giulia Galli, Jiali Gao, Paul Geerlings, Nikitas Gidopoulos, Peter M. W. Gill, Paola Gori-Giorgi, Andreas Görling, Tim Gould, Stefan Grimme, Oleg Gritsenko, Hans Jørgen Aagaard Jensen, Erin R. Johnson, Robert O. Jones, Martin Kaupp, Andreas M. Köster, Leeor Kronik, Anna I. Krylov, Simen Kvaal, Andre Laestadius, Mel Levy, Mathieu Lewin, Shubin Liu, Pierre-François Loos, Neepa T. Maitra, Frank Neese, John P. Perdew, Katarzyna Pernal, Pascal Pernot, Piotr Piecuch, Elisa Rebolini, Lucia Reining, Pina Romaniello, Adrienn Ruzsinszky, Dennis R. Salahub, Matthias Scheffler, Peter Schwerdtfeger, Viktor N. Staroverov, Jianwei Sun, Erik Tellgren, David J. Tozer, Samuel B. Trickey, Carsten A. Ullrich, Alberto Vela, Giovanni Vignale, Tomasz A. Wesolowski, Xin Xu, Weitao Yang, Chemistry, General Chemistry, Vriendenkring VUB, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie Physique (ICP), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Systèmes de Fermions Finis - Agrégats (LPT), Laboratoire de Physique Théorique (LPT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), ANR-10-LABX-0026,CSC,Center of Chemistry of Complex System(2010), ANR-19-CE07-0024,Co-LAB,Acide/base de Lewis confinées(2019), and European Project: 863481,PTEROSOR
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Materials Science ,ddc:540 ,General Physics and Astronomy ,Humans ,Physical and Theoretical Chemistry - Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 300 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 776 entries, the paper represents a broad snapshot of DFT, anno 2022.
- Published
- 2022
7. Variations of the Hartree-Fock fractional-spin error for one electron
- Author
-
Paola Gori-Giorgi, Hugh G. A. Burton, Timothy J. Daas, Clotilde Marut, Pierre-François Loos, Theoretical Chemistry, AIMMS, Physical and Theoretical Chemistry Laboratory [Oxford], University of Oxford [Oxford], Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam [Amsterdam] (VU), European Project: 863481,PTEROSOR, University of Oxford, Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,010304 chemical physics ,Nuclear Theory ,Hartree–Fock method ,General Physics and Astronomy ,FOS: Physical sciences ,Hydrogen atom ,Electron ,01 natural sciences ,Ion ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Excited state ,Quantum mechanics ,Physics - Chemical Physics ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Coulomb ,Physics::Atomic Physics ,Physical and Theoretical Chemistry ,010306 general physics ,Adiabatic process ,Spin-½ - Abstract
Fractional-spin errors are inherent in all current approximate density functionals, including Hartree-Fock theory, and their origin has been related to strong static correlation effects. The conventional way to encode fractional-spin calculations is to construct an ensemble density that scales between the high-spin and low-spin densities. In this article, we explore the variation of the Hartree-Fock fractional-spin (or ghost-interaction) error in one-electron systems using restricted and unrestricted ensemble densities, and the exact generalized Hartree-Fock representation. By considering the hydrogen atom and H$_2^+$ cation, we analyze how the unrestricted and generalized Hartree-Fock schemes minimize this error by localizing the electrons or rotating the spin coordinates. We also reveal a clear similarity between the Coulomb hole of He-like ions and the density depletion near the nucleus induced by the fractional-spin error in the unpolarized hydrogen atom. Finally, we analyze the effect of the fractional-spin error on the M{\o}ller-Plesset adiabatic connection, excited states, and functional- and density-driven errors., Comment: 12 pages, 9 figures
- Published
- 2021
8. Excited States from State-Specific Orbital-Optimized Pair Coupled Cluster
- Author
-
Antoine Marie, Anthony Scemama, Michel Caffarel, F. Kossoski, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), European Project: 863481,PTEROSOR, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
FOS: Physical sciences ,010402 general chemistry ,01 natural sciences ,Full configuration interaction ,Article ,Condensed Matter - Strongly Correlated Electrons ,Atomic orbital ,Physics - Chemical Physics ,0103 physical sciences ,Physical and Theoretical Chemistry ,Physics ,Chemical Physics (physics.chem-ph) ,Electron pair ,Condensed Matter - Materials Science ,010304 chemical physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,Configuration interaction ,Computational Physics (physics.comp-ph) ,0104 chemical sciences ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Coupled cluster ,Excited state ,Atomic physics ,Ground state ,Physics - Computational Physics ,Excitation - Abstract
The pair coupled cluster doubles (pCCD) method (where the excitation manifold is restricted to electron pairs) has a series of interesting features. Among others, it provides ground-state energies very close to what is obtained with doubly-occupied configuration interaction (DOCI), but with polynomial cost (compared with the exponential cost of the latter). Here, we address whether this similarity holds for excited states, by exploring the symmetric dissociation of the linear \ce{H4} molecule. When ground-state Hartree-Fock (HF) orbitals are employed, pCCD and DOCI excited-state energies do not match, a feature that is assigned to the poor HF reference. In contrast, by optimizing the orbitals at the pCCD level (oo-pCCD) specifically for each excited state, the discrepancies between pCCD and DOCI decrease by one or two orders of magnitude. Therefore, the pCCD and DOCI methodologies still provide comparable energies for excited states, but only if suitable, state-specific orbitals are adopted. We also assessed whether a pCCD approach could be used to directly target doubly-excited states, without having to resort to the equation-of-motion (EOM) formalism. In our $\Delta$oo-pCCD model, excitation energies were extracted from the energy difference between separate oo-pCCD calculations for the ground state and the targeted excited state. For a set comprising the doubly-excited states of \ce{CH+}, \ce{BH}, nitroxyl, nitrosomethane, and formaldehyde, we found that $\Delta$oo-pCCD provides quite accurate excitation energies, with root mean square deviations (with respect to full configuration interaction results) lower than CC3 and comparable to EOM-CCSDT, two methods with much higher computational cost., Comment: 12 pages, 4 figures
- Published
- 2021
9. Benchmarking CASPT3 vertical excitation energies
- Author
-
Martial Boggio-Pasqua, Denis Jacquemin, Pierre-François Loos, Photochimie théorique et computationnelle (LCPQ) (PTC), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), and European Project: 863481,PTEROSOR
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemical Physics (physics.chem-ph) ,Nuclear Theory (nucl-th) ,Condensed Matter - Strongly Correlated Electrons ,Nuclear Theory ,Strongly Correlated Electrons (cond-mat.str-el) ,Physics - Chemical Physics ,General Physics and Astronomy ,FOS: Physical sciences ,Physical and Theoretical Chemistry - Abstract
Based on 280 reference vertical transition energies of various natures (singlet, triplet, valence, Rydberg, $n\to\pi^*$, $\pi\to\pi^*$, and double excitations) extracted from the QUEST database, we assess the accuracy of third-order multireference perturbation theory, CASPT3, in the context of molecular excited states. When one applies the disputable ionization-potential-electron-affinity (IPEA) shift, we show that CASPT3 provides a similar accuracy as its second-order counterpart, CASPT2, with the same mean absolute error of $0.11$ eV. However, as already reported, we also observe that the accuracy of CASPT3 is almost insensitive to the IPEA shift, irrespective of the transition type and system size, with a small reduction of the mean absolute error to $0.09$ eV when the IPEA shift is switched off., Comment: 12 pages, 3 figures (supplementary material available)
- Published
- 2022
10. Hierarchy Configuration Interaction: Combining Seniority Number and Excitation Degree
- Author
-
Fábris Kossoski, Yann Damour, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and European Project: 863481,PTEROSOR
- Subjects
Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,Nuclear Theory ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,Nuclear Theory (nucl-th) ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,General Materials Science ,Physical and Theoretical Chemistry ,Physics - Computational Physics - Abstract
We propose a novel partitioning of the Hilbert space, hierarchy configuration interaction (hCI), where the excitation degree (with respect to a given reference determinant) and the seniority number (i.e., the number of unpaired electrons) are combined in a single hierarchy parameter. The key appealing feature of hCI is that each hierarchy level accounts for all classes of determinants whose number share the same scaling with system size. By surveying the dissociation of multiple molecular systems, we found that the overall performance of hCI usually exceeds or, at least, parallels that of excitation-based CI. For higher orders of hCI and excitation-based CI, the additional computational burden related to orbital optimization usually do not compensate the marginal improvements compared with results obtained with Hartree-Fock orbitals. The exception is orbital-optimized CI with single excitations, a minimally correlated model displaying the qualitatively correct description of single bond breaking, at a very modest computational cost., Comment: 7 pages, 3 figures (supporting information available)
- Published
- 2022
11. A Wigner molecule at extremely low densities: a numerically exact study
- Author
-
Miguel Escobar Azor, Léa Brooke, Stefano Evangelisti, Thierry Leininger, Pierre-François Loos, Nicolas Suaud, J. A. Berger
- Subjects
Physics ,QC1-999 - Abstract
In this work we investigate Wigner localization at very low densities by means of the exact diagonalization of the Hamiltonian. This yields numerically exact results. In particular, we study a quasi-one-dimensional system of two electrons that are confined to a ring by three-dimensional gaussians placed along the ring perimeter. To characterize the Wigner localization we study several appropriate observables, namely the two-body reduced density matrix, the localization tensor and the particle-hole entropy. We show that the localization tensor is the most promising quantity to study Wigner localization since it accurately captures the transition from the delocalized to the localized state and it can be applied to systems of all sizes.
- Published
- 2019
- Full Text
- View/download PDF
12. Static and Dynamic Bethe-Salpeter Equations in the $T$-Matrix Approximation
- Author
-
Pierre-François Loos, Pina Romaniello, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Systèmes de Fermions Finis - Agrégats (LPT), Laboratoire de Physique Théorique (LPT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), ANR-17-EURE-0009,NanoX,Science et Ingénierie à l'Echelle Nano(2017), and European Project: 863481,PTEROSOR
- Subjects
Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,Nuclear Theory ,Strongly Correlated Electrons (cond-mat.str-el) ,General Physics and Astronomy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,Nuclear Theory (nucl-th) ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,Physical and Theoretical Chemistry ,Physics - Computational Physics - Abstract
While the well-established $GW$ approximation corresponds to a resummation of the direct ring diagrams and is particularly well suited for weakly-correlated systems, the $T$-matrix approximation does sum ladder diagrams up to infinity and is supposedly more appropriate in the presence of strong correlation. Here, we derive and implement, for the first time, the static and dynamic Bethe-Salpeter equations when one considers $T$-matrix quasiparticle energies as well as a $T$-matrix-based kernel. The performance of the static scheme and its perturbative dynamical correction are assessed by computing the neutral excited states of molecular systems. Comparison with more conventional schemes as well as other wave function methods are also reported. Our results suggest that the $T$-matrix-based formalism performs best in few-electron systems where the electron density remains low., Comment: 10 pages, 6 figures
- Published
- 2022
13. A Mountaineering Strategy to Excited States: Revising Reference Values with EOM-CC4
- Author
-
Pierre-François Loos, Filippo Lipparini, Devin A. Matthews, Aymeric Blondel, Denis Jacquemin, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), and European Project: 863481,PTEROSOR
- Subjects
Chemical Physics (physics.chem-ph) ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Physics - Chemical Physics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Physical and Theoretical Chemistry ,Computational Physics (physics.comp-ph) ,Physics - Computational Physics ,Computer Science Applications - Abstract
In the framework of the computational determination of highly-accurate vertical excitation energies in small organic compounds, we explore the possibilities offered by the equation-of-motion formalism relying on the approximate fourth-order coupled-cluster (CC) method, CC4. We demonstrate, using an extended set of more than 200 reference values based on CC including up to quadruples excitations (CCSDTQ), that CC4 is an excellent approximation to CCSDTQ for excited states with a dominant contribution from single excitations with an average deviation as small as $0.003$ eV. We next assess the accuracy of several additive basis set correction schemes, in which vertical excitation energies obtained with a compact basis set and a high-order CC method are corrected with lower-order CC calculations performed in larger basis sets. Such strategies are found to be overall very beneficial, though their accuracy depend significantly on the actual scheme. Finally, CC4 is employed to improve several theoretical best estimates of the QUEST database for molecules containing between four and six (non-hydrogen) atoms, for which previous estimates were computed at the CCSDT level., 12 pages, 1 figure (supporting information available)
- Published
- 2022
14. The Quest for Highly Accurate Excitation Energies: A Computational Perspective
- Author
-
Anthony Scemama, Denis Jacquemin, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Field (physics) ,Ab initio ,FOS: Physical sciences ,010402 general chemistry ,01 natural sciences ,Set (abstract data type) ,Condensed Matter - Strongly Correlated Electrons ,Perspective (geometry) ,Physics - Chemical Physics ,0103 physical sciences ,General Materials Science ,Statistical physics ,Physical and Theoretical Chemistry ,Chemical Physics (physics.chem-ph) ,Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Basis (linear algebra) ,Computational Physics (physics.comp-ph) ,Configuration interaction ,0104 chemical sciences ,Condensed Matter - Other Condensed Matter ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Benchmark (computing) ,Physics - Computational Physics ,Excitation ,Other Condensed Matter (cond-mat.other) - Abstract
We provide an overview of the successive steps that made possible to obtain increasingly accurate excitation energies with computational chemistry tools, eventually leading to chemically accurate vertical transition energies for small- and medium-size molecules. First, we describe the evolution of \textit{ab initio} methods employed to define benchmark values, with originally Roos' CASPT2 method, then the CC3 method as in the renowned Thiel set, and more recently the resurgence of selected configuration interaction methods. The latter method has been able to deliver consistently, for both single and double excitations, highly accurate excitation energies for small molecules, as well as medium-size molecules with compact basis sets. Second, we describe how these high-level methods and the creation of representative benchmark sets of excitation energies have allowed to assess fairly and accurately the performance of computationally lighter methods. We conclude by discussing the future theoretical and technological developments in the field., Comment: 11 pages, 3 figures, Perspective review (supporting material available)
- Published
- 2020
15. New approaches to study excited states in density functional theory: general discussion
- Author
-
Weitao Yang, Neepa T. Maitra, Matteo Gatti, Emmanuel Fromager, Gianluca Levi, M. J. P. Hodgson, Donald G. Truhlar, Matthew R. Ryder, Nikitas I. Gidopoulos, Lionel Lacombe, Kieron Burke, Duncan Gowland, Trygve Helgaker, Eduardo Maurina Morais, Pina Romaniello, Manasi R. Mulay, Andreas Savin, Paola Gori-Giorgi, Andrew M. Teale, Lucia Reining, Jack Wetherell, Pierre-François Loos, Katarzyna Pernal, Jan Gerit Brandenburg, Nisha Mehta, Filippo Monti, Alex J. W. Thom, Sara Giarrusso, and Dumitru Sirbu
- Subjects
Physics ,Theoretical physics ,Excited state ,Density functional theory ,Physical and Theoretical Chemistry - Published
- 2020
16. Challenges for large scale simulation: general discussion
- Author
-
Weitao Yang, Tom J. P. Irons, Aurora Pribram-Jones, Kieron Burke, Duncan Gowland, Donald G. Truhlar, Michael F. Herbst, Pina Romaniello, Jack Wetherell, Christoph R. Jacob, Nikitas I. Gidopoulos, Jan Gerit Brandenburg, Ben Hourahine, Daniel J. Cole, Chris-Kriton Skylaris, Manasi R. Mulay, Katarzyna Pernal, Andreas Savin, Bartolomeo Civalleri, Dumitru Sirbu, Pierre François Loos, Matthew R. Ryder, Trygve Helgaker, Johannes Neugebauer, Nisha Mehta, Gábor Csányi, and Grégoire David
- Subjects
Scale (ratio) ,Computer science ,Physical and Theoretical Chemistry ,Data science - Published
- 2020
17. Strong correlation in density functional theory: general discussion
- Author
-
Weitao Yang, Thomas Malcomson, Emmanuel Fromager, Nikitas I. Gidopoulos, Katarzyna Pernal, Meilani Wibowo, Paola Gori-Giorgi, Andreas Savin, Donald G. Truhlar, Pierre-François Loos, and Trygve Helgaker
- Subjects
Correlation ,Physics ,Density functional theory ,Statistical physics ,Physical and Theoretical Chemistry - Published
- 2020
18. Transient Uniform Electron Gases
- Author
-
Pierre-François Loos, Michael Seidl, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and European Project: 863481,PTEROSOR
- Subjects
Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,Biophysics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,Condensed Matter Physics ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,Physical and Theoretical Chemistry ,Molecular Biology ,Mathematical Physics - Abstract
The uniform electron gas (UEG), a hypothetical system with finite homogenous electron density composed by an infinite number of electrons in a box of infinite volume, is the practical pillar of density-functional theory (DFT) and the foundation of the most acclaimed approximation of DFT, the local-density approximation (LDA). In the last thirty years, the knowledge of analytical parametrizations of the infinite UEG (IUEG) exchange-correlation energy has allowed researchers to perform a countless number of approximate electronic structure calculations for atoms, molecules, and solids. Recently, it has been shown that the traditional concept of the IUEG is not the unique example of UEGs, and systems, in their lowest-energy state, consisting of electrons that are confined to the surface of a sphere provide a new family of UEGs with more customizable properties. Here, we show that, some of the excited states associated with these systems can be classified as transient UEGs (TUEGs) as their electron density is only homogenous for very specific values of the radius of the sphere even though the electronic wave function is not rotationally invariant. Concrete examples are provided in the case of two-electron systems., Comment: 5 pages, 2 figures, submitted for Peter Gill Festschrift to appear in Mol. Phys
- Published
- 2022
19. Ground- and Excited-State Dipole Moments and Oscillator Strengths of Full Configuration Interaction Quality
- Author
-
Yann Damour, Raúl Quintero-Monsebaiz, Michel Caffarel, Denis Jacquemin, Fábris Kossoski, Anthony Scemama, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), and European Project: 863481,PTEROSOR
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Physics - Chemical Physics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Physical and Theoretical Chemistry ,Computational Physics (physics.comp-ph) ,Physics - Computational Physics ,Computer Science Applications - Abstract
We report ground- and excited-state dipole moments and oscillator strengths (computed in different ``gauges'' or representations) of full configuration interaction (FCI) quality using the selected configuration interaction method known as \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI). Thanks to a set encompassing 35 ground- and excited-state properties computed in 11 small molecules, the present near-FCI estimates allow us to assess the accuracy of high-order coupled-cluster (CC) calculations including up to quadruple excitations. In particular, we show that incrementing the excitation degree of the CC expansion (from CCSD to CCSDT or from CCSDT to CCSDTQ) reduces the average error with respect to the near-FCI reference values by approximately one order of magnitude., Comment: 12 pages, 8 figures (supporting information available)
- Published
- 2022
- Full Text
- View/download PDF
20. Accurate full configuration interaction correlation energy estimates for five- and six-membered rings
- Author
-
Yann Damour, Anthony Scemama, Mickaël Véril, Denis Jacquemin, Michel Caffarel, F. Kossoski, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Project: 863481,PTEROSOR, European Project: 95216,TREX, Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
- Subjects
Work (thermodynamics) ,Nuclear Theory ,FOS: Physical sciences ,General Physics and Astronomy ,010402 general chemistry ,01 natural sciences ,Full configuration interaction ,Quantum chemistry ,Molecular physics ,Nuclear Theory (nucl-th) ,Pyridazine ,Condensed Matter - Strongly Correlated Electrons ,chemistry.chemical_compound ,Physics - Chemical Physics ,0103 physical sciences ,Limit (mathematics) ,Physical and Theoretical Chemistry ,Basis set ,Chemical Physics (physics.chem-ph) ,Physics ,Quantum Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Series (mathematics) ,Computational Physics (physics.comp-ph) ,Configuration interaction ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,Quantum Physics (quant-ph) ,Physics - Computational Physics - Abstract
Following our recent work on the benzene molecule [\href{https://doi.org/10.1063/5.0027617}{J.~Chem.~Phys.~\textbf{153}, 176101 (2020)}], itself motivated by the blind challenge of Eriksen \textit{et al.} [\href{https://doi.org/10.1021/acs.jpclett.0c02621}{J.~Phys.~Chem.~Lett.~\textbf{11}, 8922 (2020)}] on the same system, we report accurate full configuration interaction (FCI) frozen-core correlation energy estimates for twelve five- and six-membered ring molecules in the standard correlation-consistent double-$\zeta$ Dunning basis set (cc-pVDZ). Our FCI correlation energy estimates, with estimated error smaller than 1 millihartree, are based on energetically optimized-orbital selected configuration interaction (SCI) calculations performed with the \textit{Configuration Interaction using a Perturbative Selection made Iteratively} (CIPSI) algorithm. Having at our disposal these accurate reference energies, the respective performance and convergence properties of several popular and widely-used families of single-reference quantum chemistry methods are investigated. In particular, we study the convergence properties of i) the M{\o}ller-Plesset perturbation series up to fifth-order (MP2, MP3, MP4, and MP5), ii) the iterative approximate coupled-cluster series CC2, CC3, and CC4, and iii) the coupled-cluster series CCSD, CCSDT, and CCSDTQ. The performance of the ground-state gold standard CCSD(T) as well as the completely renormalized CC model, CR-CC(2,3), are also investigated., Comment: 13 pages, 5 figures
- Published
- 2021
21. Variational coupled cluster for ground and excited states
- Author
-
Pierre-François Loos, Antoine Marie, F. Kossoski, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), European Project: 863481,PTEROSOR, Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polynomial ,Nuclear Theory ,General Physics and Astronomy ,FOS: Physical sciences ,010402 general chemistry ,01 natural sciences ,Quantitative Biology::Other ,Computer Science::Digital Libraries ,Square (algebra) ,Nuclear Theory (nucl-th) ,quantum chemistry ,Condensed Matter - Strongly Correlated Electrons ,Quantum mechanics ,Physics - Chemical Physics ,0103 physical sciences ,Symmetry breaking ,Physical and Theoretical Chemistry ,Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,010304 chemical physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Operator (physics) ,Materials Science (cond-mat.mtrl-sci) ,Configuration interaction ,Computational Physics (physics.comp-ph) ,electronic structure ,Physics::History of Physics ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Coupled cluster ,Excited state ,Slater determinant ,Physics - Computational Physics - Abstract
In single-reference coupled-cluster (CC) methods, one has to solve a set of non-linear polynomial equations in order to determine the so-called amplitudes which are then used to compute the energy and other properties. Although it is of common practice to converge to the (lowest-energy) ground-state solution, it is also possible, thanks to tailored algorithms, to access higher-energy roots of these equations which may or may not correspond to genuine excited states. Here, we explore the structure of the energy landscape of variational CC (VCC) and we compare it with its (projected) traditional version (TCC) in the case where the excitation operator is restricted to paired double excitations (pCCD). By investigating two model systems (the symmetric stretching of the linear \ce{H4} molecule and the continuous deformation of the square \ce{H4} molecule into a rectangular arrangement) in the presence of weak and strong correlations, the performance of VpCCD and TpCCD are gauged against their configuration interaction (CI) equivalent, known as doubly-occupied CI (DOCI), for reference Slater determinants made of ground- or excited-state Hartree-Fock orbitals or state-specific orbitals optimized directly at the VpCCD level. The influence of spatial symmetry breaking is also investigated., Comment: 16 pages, 8 figures
- Published
- 2021
- Full Text
- View/download PDF
22. Perturbation Theory in the Complex Plane: Exceptional Points and Where to Find Them
- Author
-
Pierre-François Loos, Antoine Marie, Hugh G. A. Burton, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Quantum phase transition ,FOS: Physical sciences ,complex plane ,02 engineering and technology ,01 natural sciences ,Theoretical physics ,Condensed Matter - Strongly Correlated Electrons ,Position (vector) ,Physics - Chemical Physics ,0103 physical sciences ,Quantum system ,General Materials Science ,Resummation ,010306 general physics ,perturbation theory ,Physics ,Chemical Physics (physics.chem-ph) ,Quantum Physics ,Series (mathematics) ,Strongly Correlated Electrons (cond-mat.str-el) ,Computational Physics (physics.comp-ph) ,16. Peace & justice ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,divergent series ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,resummation ,exceptional point ,Gravitational singularity ,Perturbation theory (quantum mechanics) ,0210 nano-technology ,Quantum Physics (quant-ph) ,Complex plane ,Physics - Computational Physics - Abstract
We explore the non-Hermitian extension of quantum chemistry in the complex plane and its link with perturbation theory. We observe that the physics of a quantum system is intimately connected to the position of complex-valued energy singularities, known as exceptional points. After presenting the fundamental concepts of non-Hermitian quantum chemistry in the complex plane, including the mean-field Hartree--Fock approximation and Rayleigh--Schr\"odinger perturbation theory, we provide a historical overview of the various research activities that have been performed on the physics of singularities. In particular, we highlight seminal work on the convergence behaviour of perturbative series obtained within M{\o}ller--Plesset perturbation theory, and its links with quantum phase transitions. We also discuss several resummation techniques (such as Pad\'e and quadratic approximants) that can improve the overall accuracy of the M{\o}ller--Plesset perturbative series in both convergent and divergent cases. Each of these points is illustrated using the Hubbard dimer at half filling, which proves to be a versatile model for understanding the subtlety of analytically-continued perturbation theory in the complex plane., Comment: 22 page, 14 figures, 4 tables
- Published
- 2021
23. Evaluating 0–0 Energies with Theoretical Tools: A Short Review
- Author
-
Pierre-François Loos, Denis Jacquemin, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Computation ,Ab initio ,FOS: Physical sciences ,010402 general chemistry ,01 natural sciences ,Analytical Chemistry ,Quality (physics) ,Physics - Chemical Physics ,0103 physical sciences ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Chemical Physics (physics.chem-ph) ,Physics ,Valence (chemistry) ,010304 chemical physics ,Basis (linear algebra) ,Organic Chemistry ,Computational Physics (physics.comp-ph) ,0104 chemical sciences ,Computational physics ,Hybrid functional ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Excited state ,Physics - Computational Physics ,Energy (signal processing) - Abstract
For a given electronic excited state, the 0-0 energy ($T_0$ or $T_{00}$) is the simplest property allowing straightforward and physically-sound comparisons between theory and (accurate) experiment. However, the computation of 0-0 energies with \emph{ab initio} approaches requires determining both the structure and the vibrational frequencies of the excited state, which limits the quality of the theoretical models that can be considered in practice. This explains why only a rather limited, yet constantly increasing, number of works have been devoted to the determination of this property. In this contribution, we review these efforts with a focus on benchmark studies carried out for both gas phase and solvated compounds. Over the years, not only as the size of the molecules increased, but the refinement of the theoretical tools has followed the same trend. Though the results obtained in these benchmarks significantly depend on both the details of the protocol and the nature of the excited states, one can now roughly estimate, in the case of valence transitions, the overall accuracy of theoretical schemes as follows: $1$ eV for CIS, $0.2$--$0.3$ eV for CIS(D), $0.2$--$0.4$ eV for TD-DFT when one employs hybrid functionals, $0.1$--$0.2$ eV for ADC(2) and CC2, and $0.04$ eV for CC3, the latter approach being the only one delivering chemical accuracy on a near-systematic basis., Comment: 15 pages, 6 figures
- Published
- 2019
24. Reference Energies for Intramolecular Charge-Transfer Excitations
- Author
-
Pierre-François Loos, Denis Jacquemin, Xavier Blase, Massimiliano Comin, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Théorie de la Matière Condensée (NEEL - TMC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-20-CE29-0005,BSE-forces,Géométries dans l'état excité dans le formalisme de Bethe-Salpeter(2020), European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Théorie de la Matière Condensée (TMC), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, ANR-20-CE29-0005,BSE-forces,Géométries dans l'état excité dans le formalisme de Bethe-Salpeter(2020), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Physical sciences ,Context (language use) ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,symbols.namesake ,Physics - Chemical Physics ,0103 physical sciences ,Physical and Theoretical Chemistry ,Wave function ,Basis set ,Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,010304 chemical physics ,Basis (linear algebra) ,Series (mathematics) ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,Charge (physics) ,Function (mathematics) ,Computational Physics (physics.comp-ph) ,3. Good health ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Rydberg formula ,symbols ,Atomic physics ,Physics - Computational Physics - Abstract
In the aim of completing our previous efforts devoted to local and Rydberg transitions in organic compounds, we provide a series of highly-accurate vertical transition energies for intramolecular charge-transfer transitions occurring in ($\pi$-conjugated) molecular compounds. To this end we apply a composite protocol consisting of linear-response CCSDT excitation energies determined with Dunning's double-$\zeta$ basis set corrected by CC3/CCSDT-3 energies obtained with the corresponding triple-$\zeta$ basis. Further basis set corrections (up to \emph{aug}-cc-pVQZ) are obtained at the CCSD and CC2 level. We report 30 transitions obtained in 17 compounds. These reference values are then used to benchmark a series of wave function (CIS(D), SOPPA, RPA(D), EOM-MP2, CC2, CCSD, CCSD(T)(a)*, CCSDR(3), CCSDT-3, CC3, ADC(2), ADC(3), and ADC(2.5)), the Green's function-based Bethe-Salpeter equation (BSE) formalism performed on top of the partially self-consistent ev$GW$ scheme considering two different starting points (BSE/ev$GW$@HF and BSE/ev$GW$@PBE0), and TD-DFT combined with several exchange-correlation functionals (B3LYP, PBE0, M06-2X, CAM-B3LYP, LC-$\omega$HPBE, $\omega$B97X, $\omega$B97X-D, and M11)., Comment: 25 pages, 3 figures, 3 tables (SI available)
- Published
- 2021
25. Benchmarking TD-DFT and Wave Function Methods for Oscillator Strengths and Excited-State Dipole Moments
- Author
-
Martial Boggio-Pasqua, Denis Jacquemin, Pierre-François Loos, Rudraditya Sarkar, Photochimie théorique et computationnelle (LCPQ) (PTC), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and ANR-18-EURE-0012,LumoMat-E,Molecular Materials for Organic Electronics/Photonics(2018)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,010304 chemical physics ,Equations of motion ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,01 natural sciences ,Full configuration interaction ,3. Good health ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Dipole ,Atomic orbital ,Physics - Chemical Physics ,Excited state ,Quantum mechanics ,0103 physical sciences ,Overall performance ,Physical and Theoretical Chemistry ,Wave function ,Physics - Computational Physics ,Basis set - Abstract
Using a set of oscillator strengths and excited-state dipole moments of near full configuration interaction (FCI) quality determined for small compounds, we benchmark the performances of several single-reference wave function methods (CC2, CCSD, CC3, CCSDT, ADC(2), and ADC(3/2)) and time-dependent density-functional theory (TD-DFT) with various functionals (B3LYP, PBE0, M06-2X, CAM-B3LYP, and $\omega$B97X-D). We consider the impact of various gauges (length, velocity, and mixed) and formalisms: equation of motion (EOM) \emph{vs} linear response (LR), relaxed \emph{vs} unrelaxed orbitals, etc. Beyond the expected accuracy improvements and a neat decrease of formalism sensitivy when using higher-order wave function methods, the present contribution shows that, for both ADC(2) and CC2, the choice of gauge impacts more significantly the magnitude of the oscillator strengths than the choice of formalism, and that CCSD yields a notable improvement on this transition property as compared to CC2. For the excited-state dipole moments, switching on orbital relaxation appreciably improves the accuracy of both ADC(2) and CC2, but has a rather small effect at the CCSD level. Going from ground to excited states, the typical errors on dipole moments for a given method tend to roughly triple. Interestingly, the ADC(3/2) oscillator strengths and dipoles are significantly more accurate than their ADC(2) counterparts, whereas the two models do deliver rather similar absolute errors for transition energies. Concerning TD-DFT, one finds: i) a rather negligible impact of the gauge on oscillator strengths for all tested functionals (except for M06-2X); ii) deviations of ca.~0.10 D on ground-state dipoles for all functionals; iii) the better overall performance of CAM-B3LYP for the two considered excited-state properties., Comment: 18 pages, 7 figures
- Published
- 2021
26. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies
- Author
-
Rudraditya Sarkar, Pierre-François Loos, Martial Boggio-Pasqua, Denis Jacquemin, Photochimie théorique et computationnelle (LCPQ) (PTC), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)
- Subjects
[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Physics - Chemical Physics ,FOS: Physical sciences ,Physical and Theoretical Chemistry ,Computational Physics (physics.comp-ph) ,Physics - Computational Physics ,Computer Science Applications - Abstract
Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events, but also to provide reference values for vertical transition energies, hence allowing to benchmark lower-order models. In this category, both CASPT2 and NEVPT2 are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches the present work relies on highly-accurate ($\pm 0.03$ eV) \emph{aug}-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 $n \to \pi^*$, 119 $\pi \to \pi^*$, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially-contracted (PC) and strongly-contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of $0.11$ and $0.13$ eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focussed on single-reference wave function methods (\textit{J.~Chem. Theory Comput.} \textbf{14}, 4360 (2018); \emph{ibid.}, \textbf{16}, 1711 (2020)), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character., Comment: 21 pages, 3 figure (supporting information available)
- Published
- 2021
27. QUESTDB: A database of highly accurate excitation energies for the electronic structure community
- Author
-
Michel Caffarel, Denis Jacquemin, Martial Boggio-Pasqua, Pierre-François Loos, Anthony Scemama, Mickaël Véril, Filippo Lipparini, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), University of Pisa - Università di Pisa, Photochimie théorique et computationnelle (LCPQ) (PTC), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-18-EURE-0012, ANR-18-EURE-0012,LumoMat-E,Molecular Materials for Organic Electronics/Photonics(2018), European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
FOS: Physical sciences ,excitation energies ,Type (model theory) ,benchmark ,coupled cluster theory ,database ,excited states ,full configuration interaction ,010402 general chemistry ,computer.software_genre ,01 natural sciences ,Biochemistry ,Full configuration interaction ,Physics - Chemical Physics ,0103 physical sciences ,Materials Chemistry ,Limit (mathematics) ,Physical and Theoretical Chemistry ,Basis set ,Chemical Physics (physics.chem-ph) ,Physics ,010304 chemical physics ,Basis (linear algebra) ,Database ,Computational Physics (physics.comp-ph) ,Configuration interaction ,0104 chemical sciences ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Computational Mathematics ,Coupled cluster ,Excited state ,computer ,Physics - Computational Physics - Abstract
We describe our efforts of the past few years to create a large set of more than 500 highly-accurate vertical excitation energies of various natures ($\pi \to \pi^*$, $n \to \pi^*$, double excitation, Rydberg, singlet, doublet, triplet, etc) in small- and medium-sized molecules. These values have been obtained using an incremental strategy which consists in combining high-order coupled cluster and selected configuration interaction calculations using increasingly large diffuse basis sets in order to reach high accuracy. One of the key aspect of the so-called QUEST database of vertical excitations is that it does not rely on any experimental values, avoiding potential biases inherently linked to experiments and facilitating theoretical cross comparisons. Following this composite protocol, we have been able to produce theoretical best estimate (TBEs) with the aug-cc-pVTZ basis set for each of these transitions, as well as basis set corrected TBEs (i.e., near the complete basis set limit) for some of them. The TBEs/aug-cc-pVTZ have been employed to benchmark a large number of (lower-order) wave function methods such as CIS(D), ADC(2), CC2, STEOM-CCSD, CCSD, CCSDR(3), CCSDT-3, ADC(3), CC3, NEVPT2, and others (including spin-scaled variants). In order to gather the huge amount of data produced during the QUEST project, we have created a website [https://lcpq.github.io/QUESTDB_website] where one can easily test and compare the accuracy of a given method with respect to various variables such as the molecule size or its family, the nature of the excited states, the type of basis set, etc. We hope that the present review will provide a useful summary of our effort so far and foster new developments around excited-state methods., Comment: 44 pages, 5 figures, 4 Tables, supplementary information available at https://doi.org/10.5281/zenodo.4297012
- Published
- 2021
28. Spin-Conserved and Spin-Flip Optical Excitations From the Bethe-Salpeter Equation Formalism
- Author
-
Pierre-François Loos, Enzo Monino, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,Bethe–Salpeter equation ,010304 chemical physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Formalism (philosophy) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,01 natural sciences ,Article ,3. Good health ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,Quantum mechanics ,0103 physical sciences ,Spin-flip ,Physical and Theoretical Chemistry ,Perturbation theory ,Adiabatic process ,Physics - Computational Physics ,Spin-½ - Abstract
Like adiabatic time-dependent density-functional theory (TD-DFT), the Bethe-Salpeter equation (BSE) formalism of many-body perturbation theory, in its static approximation, is "blind" to double (and higher) excitations, which are ubiquitous, for example, in conjugated molecules like polyenes. Here, we apply the spin-flip \textit{ansatz} (which considers the lowest triplet state as the reference configuration instead of the singlet ground state) to the BSE formalism in order to access, in particular, double excitations. The present scheme is based on a spin-unrestricted version of the $GW$ approximation employed to compute the charged excitations and screened Coulomb potential required for the BSE calculations. Dynamical corrections to the static BSE optical excitations are taken into account via an unrestricted generalization of our recently developed (renormalized) perturbative treatment. The performance of the present spin-flip BSE formalism is illustrated by computing excited-state energies of the beryllium atom, the hydrogen molecule at various bond lengths, and cyclobutadiene in its rectangular and square-planar geometries., Comment: 14 pages, 3 figures and 3 tables
- Published
- 2021
- Full Text
- View/download PDF
29. Spin-adapted selected configuration interaction in a determinant basis
- Author
-
Kevin Gasperich, Thomas Applencourt, Vijay Gopal Chilkuri, Pierre-François Loos, Anthony Scemama, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Argonne National Laboratory [Lemont] (ANL), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
010304 chemical physics ,Operator (physics) ,Selected Configuration Interaction ,Configuration interaction ,Eigenfunction ,010402 general chemistry ,01 natural sciences ,Spin quantum number ,Full configuration interaction ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,0103 physical sciences ,Spin adaptation ,Slater determinant ,Statistical physics ,configuration state functions ,Wave function ,Mathematics ,Spin-½ - Abstract
International audience; Selected configuration interaction (sCI) methods, when complemented with a second order perturbative correction , provide near full configuration interaction (FCI) quality energies with only a small fraction of the Slater determinants of the FCI space. The selection of the determinants is often implemented in a determinant-based formalism, and therefore does not provide spin adapted wave functions. In other words, sCI wave functions are not eigenfunctions of theŜ 2 operator. In some situations, having a spin adapted wave function is essential for the proper convergence of the method. We propose an efficient algorithm which, given an arbitrary determinant space, generates all the missing Slater determinants allowing one to obtain spin adapted wave functions while avoiding working with configuration state functions. For example, generating all the possible determinants with 6 up-spin and 6 down-spin electrons in 12 open shells takes 21 CPU cycles per generated Slater determinant. We also propose a modification of the denominators in the Epstein-Nesbet perturbation theory reducing significantly the non-invariance of the second order correction with respect to different values of the spin quantum number m s. The computational cost of this correction is also negligible.
- Published
- 2021
30. Spin adaptation with determinant-based selected configuration interaction
- Author
-
Vijay Gopal Chilkuri, Thomas Applencourt, Kevin Gasperich, Pierre-François Loos, Anthony Scemama
- Published
- 2021
- Full Text
- View/download PDF
31. A mountaineering strategy to excited states: highly-accurate oscillator strengths and dipole moments of small molecules
- Author
-
Amara Chrayteh, Denis Jacquemin, Aymeric Blondel, Pierre-François Loos, Modélisation Et Spectroscopie (ModES), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,Work (thermodynamics) ,010304 chemical physics ,Basis (linear algebra) ,Series (mathematics) ,Oscillator strength ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,01 natural sciences ,3. Good health ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Dipole ,Excited state ,Physics - Chemical Physics ,0103 physical sciences ,Limit (mathematics) ,Physical and Theoretical Chemistry ,Atomic physics ,Physics::Chemical Physics ,Physics - Computational Physics ,Basis set - Abstract
This work presents a series of highly-accurate excited-state properties obtained using high-order coupled-cluster (CC) calculations performed with a series of diffuse containing basis sets, as well as extensive comparisons with experimental values. Indeed, we have computed both the main ground-to-excited transition property, the oscillator strength, as well as the ground- and excited-state dipole moments, considering {thirteen} small molecules (hydridoboron, hydrogen chloride, water, hydrogen sulfide, boron fluoride, carbon monoxide, dinitrogen, ethylene, formaldehyde, thioformaldehyde, nitroxyl, {fluorocarbene}, and silylidene). We systematically include corrections up to the quintuple (CCSDTQP) in the CC expansion and extrapolate to the complete basis set limit. When comparisons with experimental measurements are possible, that is, when a number of consistent experimental data can be found, theory typically provides values falling within the experimental error bar for the excited-state properties. Besides completing our previous studies focussed on transition energies (\textit{J.~Chem.~Theory Comput.} \textbf{14} (2018) 4360--4379, \textit{ibid.}~\textbf{15} (2019) 1939--1956, \textit{ibid.}~\textbf{16} (2020) 1711--1741, and \textit{ibid.}~\textbf{16} (2020) 3720--3736), this work also provides ultra-accurate dipoles and oscillator strengths that could be employed for future theoretical benchmarks., Comment: 24 pages (Supp. Mat. available)
- Published
- 2021
32. Potential Energy Surfaces without Unphysical Discontinuities: The Coulomb Hole Plus Screened Exchange Approach
- Author
-
Pina Romaniello, J. Arjan Berger, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Systèmes de Fermions Finis - Agrégats (LPT), Laboratoire de Physique Théorique (LPT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), ANR-18-CE30-0025,PhemSpec,Spectres de photoémission de Quantum Monte Carlo et de la théorie des perturbations à plusieurs corps: le meilleur des deux mondes(2018), ANR-19-CE30-0011,TRIXS,Description théorique de la diffusion inélastique des rayons X(2019), European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,Work (thermodynamics) ,Fluctuation-dissipation theorem ,010304 chemical physics ,FOS: Physical sciences ,Classification of discontinuities ,01 natural sciences ,Potential energy ,Diatomic molecule ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Atomic orbital ,Quantum electrodynamics ,Physics - Chemical Physics ,0103 physical sciences ,Coulomb ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,Adiabatic process - Abstract
International audience; In this work we show the advantages of using the Coulomb-hole plus screened-exchange (COHSEX) approach in the calculation of potential energy surfaces. In particular, we demonstrate that, unlike perturbative $GW$ and partial self-consistent $GW$ approaches, such as eigenvalue-self-consistent $GW$ and quasi-particle self-consistent $GW$, the COHSEX approach yields smooth potential energy surfaces without irregularities and discontinuities. Moreover, we show that the ground-state potential energy surfaces (PES) obtained from the Bethe-Salpeter equation, within the adiabatic connection fluctuation dissipation theorem, built with quasi-particle energies obtained from perturbative COHSEX on top of Hartree-Fock (BSE@COHSEX@HF) yield very accurate results for diatomic molecules close to their equilibrium distance. When self-consistent COHSEX quasi-particle energies and orbitals are used to build the BSE equation the results become independent of the starting point. We show that self-consistency worsens the total energies but improves the equilibrium distances with respect to BSE@COHSEX@HF. This is mainly due to changes in the screening inside the BSE.
- Published
- 2020
33. Weight dependence of local exchange-correlation functionals in ensemble density-functional theory:Double excitations in two-electron systems
- Author
-
Emmanuel Fromager, Bruno Senjean, Clotilde Marut, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut de Chimie de Strasbourg, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de chimie quantique et de modélisation moléculaire (LCQMM), Centre National de la Recherche Scientifique (CNRS), Theoretical Chemistry, Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Computation ,FOS: Physical sciences ,Electron ,Molecular systems ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,0103 physical sciences ,Statistical physics ,SDG 7 - Affordable and Clean Energy ,Physical and Theoretical Chemistry ,010306 general physics ,Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,010304 chemical physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,Computational Physics (physics.comp-ph) ,16. Peace & justice ,Hybrid functional ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Formalism (philosophy of mathematics) ,Density functional theory ,Physics - Computational Physics ,Excitation - Abstract
Gross--Oliveira--Kohn (GOK) ensemble density-functional theory (GOK-DFT) is a time-\textit{independent} extension of density-functional theory (DFT) which allows to compute excited-state energies via the derivatives of the ensemble energy with respect to the ensemble weights. Contrary to the time-dependent version of DFT (TD-DFT), double excitations can be easily computed within GOK-DFT. However, to take full advantage of this formalism, one must have access to a \textit{weight-dependent} exchange-correlation functional in order to model the infamous ensemble derivative contribution to the excitation energies. In the present article, we discuss the construction of first-rung (i.e., local) weight-dependent exchange-correlation density-functional approximations for two-electron atomic and molecular systems (He and H$_2$) specifically designed for the computation of double excitations within GOK-DFT. In the spirit of optimally-tuned range-separated hybrid functionals, a two-step system-dependent procedure is proposed to obtain accurate energies associated with double excitations., 11 pages, 4 figures (New horizons in density functional theory Faraday Discussion)
- Published
- 2020
34. Taming the fixed-node error in diffusion Monte Carlo via range separation
- Author
-
Anthony Scemama, Emmanuel Giner, Pierre-François Loos, Anouar Benali, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Argonne National Laboratory [Lemont] (ANL), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Coulomb operator ,Coalescence (physics) ,Physics ,Chemical Physics (physics.chem-ph) ,010304 chemical physics ,General Physics and Astronomy ,FOS: Physical sciences ,Configuration interaction ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Present method ,Physics - Chemical Physics ,0103 physical sciences ,Stochastic optimization ,Diffusion Monte Carlo ,Statistical physics ,Physical and Theoretical Chemistry ,Wave function - Abstract
By combining density-functional theory (DFT) and wave function theory (WFT) via the range separation (RS) of the interelectronic Coulomb operator, we obtain accurate fixed-node diffusion Monte Carlo (FN-DMC) energies with compact multi-determinant trial wave functions. In particular, we combine here short-range exchange-correlation functionals with a flavor of selected configuration interaction (SCI) known as \emph{configuration interaction using a perturbative selection made iteratively} (CIPSI), a scheme that we label RS-DFT-CIPSI. One of the take-home messages of the present study is that RS-DFT-CIPSI trial wave functions yield lower fixed-node energies with more compact multi-determinant expansions than CIPSI, especially for small basis sets. Indeed, as the CIPSI component of RS-DFT-CIPSI is relieved from describing the short-range part of the correlation hole around the electron-electron coalescence points, the number of determinants in the trial wave function required to reach a given accuracy is significantly reduced as compared to a conventional CIPSI calculation. Importantly, by performing various numerical experiments, we evidence that the RS-DFT scheme essentially plays the role of a simple Jastrow factor by mimicking short-range correlation effects, hence avoiding the burden of performing a stochastic optimization. Considering the 55 atomization energies of the Gaussian-1 benchmark set of molecules, we show that using a fixed value of $\mu=0.5$~bohr$^{-1}$ provides effective error cancellations as well as compact trial wave functions, making the present method a good candidate for the accurate description of large chemical systems., Comment: 14 pages, 6 figures, SI at https://doi.org/10.5281/zenodo.3996568
- Published
- 2020
35. Dynamical Kernels for Optical Excitations
- Author
-
Juliette Authier, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), European Project: 863481,PTEROSOR, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Computation ,FOS: Physical sciences ,General Physics and Astronomy ,010402 general chemistry ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,symbols.namesake ,Physics - Chemical Physics ,0103 physical sciences ,Physical and Theoretical Chemistry ,Spurious relationship ,Mathematical physics ,Chemical Physics (physics.chem-ph) ,Physics ,Condensed Matter - Materials Science ,Valence (chemistry) ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Materials Science (cond-mat.mtrl-sci) ,Computational Physics (physics.comp-ph) ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Formalism (philosophy of mathematics) ,Excited state ,Rydberg formula ,symbols ,A priori and a posteriori ,Physics - Computational Physics ,Linear response theory - Abstract
We discuss the physical properties and accuracy of three distinct dynamical (ie, frequency-dependent) kernels for the computation of optical excitations within linear response theory: i) an a priori built kernel inspired by the dressed time-dependent density-functional theory (TDDFT) kernel proposed by Maitra and coworkers, ii) the dynamical kernel stemming from the Bethe-Salpeter equation (BSE) formalism derived originally by Strinati , and iii) the second-order BSE kernel derived by Yang and coworkers . The principal take-home message of the present paper is that dynamical kernels can provide, thanks to their frequency-dependent nature, additional excitations that can be associated to higher-order excitations (such as the infamous double excitations), an unappreciated feature of dynamical quantities. We also analyze, for each kernel, the appearance of spurious excitations originating from the approximate nature of the kernels, as first evidenced by Romaniello. Using a simple two-level model, prototypical examples of valence, charge-transfer, and Rydberg excited states are considered., Comment: 9 pages, 3 figures
- Published
- 2020
36. A weight-dependent local correlation density-functional approximation for ensembles
- Author
-
Pierre-François Loos, Emmanuel Fromager, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de chimie quantique et de modélisation moléculaire (LCQMM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Computation ,General Physics and Astronomy ,FOS: Physical sciences ,010402 general chemistry ,01 natural sciences ,Correlation ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,0103 physical sciences ,Statistical physics ,Physical and Theoretical Chemistry ,Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,010304 chemical physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,Functional approximation ,Computational Physics (physics.comp-ph) ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Excited state ,Density functional theory ,Fermi gas ,Physics - Computational Physics ,Excitation - Abstract
We report a local, weight-dependent correlation density-functional approximation that incorporates information about both ground and excited states in the context of density-functional theory for ensembles (eDFT). This density-functional approximation for ensembles is specially designed for the computation of single and double excitations within Gross--Oliveira--Kohn (GOK) DFT (i.e., eDFT for neutral excitations), and can be seen as a natural extension of the ubiquitous local-density approximation in the context of ensembles. The resulting density-functional approximation, based on both finite and infinite uniform electron gas models, automatically incorporates the infamous derivative discontinuity contributions to the excitation energies through its explicit ensemble weight dependence. Its accuracy is illustrated by computing single and double excitations in one-dimensional many-electron systems in the weak, intermediate and strong correlation regimes. Although the present weight-dependent functional has been specifically designed for one-dimensional systems, the methodology proposed here is general, i.e., directly applicable to the construction of weight-dependent functionals for realistic three-dimensional systems, such as molecules and solids., 13 pages, 8 figures, supporting information available
- Published
- 2020
37. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies
- Author
-
Xavier Blase, Pierre-François Loos, Denis Jacquemin, Anthony Scemama, Ivan Duchemin, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratory of Atomistic Simulation (LSIM), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Théorie de la Matière Condensée (TMC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Théorie de la Matière Condensée (NEEL - TMC), ANR-17-EURE-0009,NanoX,Science et Ingénierie à l'Echelle Nano(2017), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
Chemical Physics (physics.chem-ph) ,GW approximation ,Physics ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,01 natural sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Formalism (philosophy of mathematics) ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,0103 physical sciences ,General Materials Science ,Physical and Theoretical Chemistry ,010306 general physics ,Ground state ,Physics - Computational Physics ,Mathematical physics - Abstract
The combination of the many-body Green's function $GW$ approximation and the Bethe-Salpeter equation (BSE) formalism has shown to be a promising alternative to time-dependent density-functional theory (TD-DFT) for computing vertical transition energies and oscillator strengths in molecular systems. The BSE formalism can also be employed to compute ground-state correlation energies thanks to the adiabatic-connection fluctuation-dissipation theorem (ACFDT). Here, we study the topology of the ground-state potential energy surfaces (PES) of several diatomic molecules near their equilibrium bond length. Thanks to comparisons with state-of-art computational approaches (CC3), we show that ACFDT@BSE is surprisingly accurate, and can even compete with lower-order coupled cluster methods (CC2 and CCSD) in terms of total energies and equilibrium bond distances for the considered systems. However, we sometimes observe unphysical irregularities on the ground-state PES in relation with difficulties in the identification of a few $GW$ quasiparticle energies., 10 pages, 4 figures (supporting information available)
- Published
- 2020
38. A Density-Based Basis-Set Incompleteness Correction for GW Methods
- Author
-
Pierre-François Loos, Emmanuel Giner, Barthélémy Pradines, Anthony Scemama, Julien Toulouse, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Calcul et des Données (ISCD), Sorbonne Université (SU), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Chemical Physics (physics.chem-ph) ,Physics ,GW approximation ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Electronic correlation ,FOS: Physical sciences ,Computational Physics (physics.comp-ph) ,01 natural sciences ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Strongly Correlated Electrons ,Density based ,Physics - Chemical Physics ,0103 physical sciences ,Mathematics::Metric Geometry ,Slow convergence ,[CHIM]Chemical Sciences ,Statistical physics ,Physical and Theoretical Chemistry ,Perturbation theory ,Physics - Computational Physics ,Basis set - Abstract
Similar to other electron correlation methods, many-body perturbation theory methods based on Green functions, such as the so-called $GW$ approximation, suffer from the usual slow convergence of energetic properties with respect to the size of the one-electron basis set. This displeasing feature is due to lack of explicit electron-electron terms modeling the infamous Kato electron-electron cusp and the correlation Coulomb hole around it. Here, we propose a computationally efficient density-based basis set correction based on short-range correlation density functionals which significantly speeds up the convergence of energetics towards the complete basis set limit. The performance of this density-based correction is illustrated by computing the ionization potentials of the twenty smallest atoms and molecules of the GW100 test set at the perturbative $GW$ (or $G_0W_0$) level using increasingly large basis sets. We also compute the ionization potentials of the five canonical nucleobases (adenine, cytosine, thymine, guanine, and uracil) and show that, here again, a significant improvement is obtained., 11 pages, 2 figures (supporting information available)
- Published
- 2020
39. A basis-set error correction based on density-functional theory for strongly correlated molecular systems
- Author
-
Anthony Scemama, Julien Toulouse, Emmanuel Giner, Pierre-François Loos, Laboratoire de chimie théorique (LCT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,010304 chemical physics ,Basis (linear algebra) ,Spin polarization ,General Physics and Astronomy ,FOS: Physical sciences ,Size consistency and size extensivity ,Computational Physics (physics.comp-ph) ,010402 general chemistry ,01 natural sciences ,Potential energy ,Projection (linear algebra) ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Physics - Chemical Physics ,0103 physical sciences ,Density functional theory ,Statistical physics ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,Physics - Computational Physics ,Basis set ,Spin-½ - Abstract
International audience; We extend to strongly correlated molecular systems the recently introduced basis-set incompleteness correction based on density-functional theory (DFT) [E. Giner et al., J. Chem. Phys. 149, 194301 (2018)]. This basis-set correction relies on a mapping between wave-function calculations in a finite basis set and range-separated DFT (RSDFT) through the definition of an effective non-divergent interaction corresponding to the electron-electron Coulomb interaction projected in the finite basis set. This enables the use of RSDFT-type complementary density functionals to recover the dominant part of the short-range correlation effects missing in this finite basis set. To study both weak and strong correlation regimes we consider the potential energy curves of the H10, N2, O2, and F2 molecules up to the dissociation limit, and we explore various approximations of complementary functionals fulfilling two key properties: spin-multiplet degeneracy (i.e., independence of the energy with respect to the spin projection Sz) and size consistency. Specifically, we investigate the dependence of the functional on different types of on-top pair densities and spin polarizations. The key result of this study is that the explicit dependence on the on-top pair density allows one to completely remove the dependence on any form of spin polarization without any significant loss of accuracy. Quantitatively, we show that the basis-set correction reaches chemical accuracy on atomization energies with triple-zeta quality basis sets for most of the systems studied here. Also, the present basis-set incompleteness correction provides smooth potential energy curves along the whole range of internuclear distances.
- Published
- 2020
40. A Mountaineering Strategy to Excited States: Highly-Accurate Energies and Benchmarks for Medium Size Molecules
- Author
-
Denis Jacquemin, Anthony Scemama, Martial Boggio-Pasqua, Filippo Lipparini, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut des Sciences du Calcul et des Données (ISCD), Sorbonne Université (SU), Photochimie théorique et computationnelle (LCPQ) (PTC), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)
- Subjects
FOS: Physical sciences ,Molecular physics ,01 natural sciences ,chemistry.chemical_compound ,Tetrazine ,symbols.namesake ,Physics - Chemical Physics ,0103 physical sciences ,Molecule ,Singlet state ,Physical and Theoretical Chemistry ,Chemical Physics (physics.chem-ph) ,Physics ,Valence (chemistry) ,010304 chemical physics ,Computational Physics (physics.comp-ph) ,Configuration interaction ,Thioacetone ,Propynal ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Coupled cluster ,chemistry ,Excited state ,Rydberg formula ,symbols ,Atomic physics ,Physics - Computational Physics ,Excitation - Abstract
Following our previous work focussing on compounds containing up to 3 non-hydrogen atoms [\emph{J. Chem. Theory Comput.} {\bfseries 14} (2018) 4360--4379], we present here highly-accurate vertical transition energies obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms. To obtain these energies, we use equation-of-motion coupled cluster theory up to the highest technically possible excitation order for these systems (CC3, EOM-CCSDT, and EOM-CCSDTQ), selected configuration interaction (SCI) calculations (with tens of millions of determinants in the reference space), as well as the multiconfigurational $n$-electron valence state perturbation theory (NEVPT2) method. All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least CC3/\emph{aug}-cc-pVQZ vertical excitation energies as well as CC3/\emph{aug}-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3 almost systematically delivers transition energies in agreement with higher-level methods with a typical deviation of $\pm 0.04$ eV, except for transitions with a dominant double excitation character where the error is much larger. The present contribution gathers a large, diverse and accurate set of more than 200 highly-accurate transition energies for states of various natures (valence, Rydberg, singlet, triplet, $n \rightarrow \pi^*$, $\pi \rightarrow \pi^*$, \ldots). We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2), CC2, STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, CC3, as well as NEVPT2. The results of these benchmarks are compared to the available literature data., Comment: 78 pages, 2 figures (supporting information available)
- Published
- 2020
41. Capturing static and dynamic correlation with ΔNO-MP2 and ΔNO-CCSD
- Author
-
Joshua W. Hollett and Pierre-François Loos
- Subjects
Physics ,Delta ,010304 chemical physics ,General Physics and Astronomy ,010402 general chemistry ,Residual ,01 natural sciences ,Diatomic molecule ,Potential energy ,Full configuration interaction ,0104 chemical sciences ,Correlation ,Quantum mechanics ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,Perturbation theory ,Selection (genetic algorithm) - Abstract
The NO method for static correlation is combined with second-order Mller-Plesset perturbation theory (MP2) and coupled-cluster singles and doubles (CCSD) to account for dynamic correlation. The MP2 and CCSD expressions are adapted from nite-temperature CCSD, which includes orbital occupancies and vacancies, and expanded orbital summations. Correlation is partitioned with the aid of damping factors incorporated into the MP2 and CCSD residual equations. Potential energy curves for a selection of diatomics are in good agreement with extrapolated full conguration interaction results (exFCI), and on par with conventional multireference approaches.
- Published
- 2020
42. The Bethe-Salpeter Equation Formalism: From Physics to Chemistry
- Author
-
Pierre-François Loos, Xavier Blase, Denis Jacquemin, Ivan Duchemin, Théorie de la Matière Condensée (TMC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratory of Atomistic Simulation (LSIM), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), European Project: 863481,PTEROSOR, Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Théorie de la Matière Condensée (NEEL - TMC), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and ANR-17-EURE-0009,NanoX,Science et Ingénierie à l'Echelle Nano(2017)
- Subjects
Physics ,Chemical Physics (physics.chem-ph) ,Condensed Matter - Materials Science ,Bethe–Salpeter equation ,010304 chemical physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Vis spectra ,Molecular systems ,Computational Physics (physics.comp-ph) ,01 natural sciences ,Hybrid functional ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Strongly Correlated Electrons ,Formalism (philosophy of mathematics) ,Theoretical physics ,Physics - Chemical Physics ,0103 physical sciences ,General Materials Science ,Physical and Theoretical Chemistry ,Ionization energy ,010306 general physics ,Physics - Computational Physics ,Excitation - Abstract
The Bethe-Salpeter equation (BSE) formalism is steadily asserting itself as a new efficient and accurate tool in the ensemble of computational methods available to chemists in order to predict optical excitations in molecular systems. In particular, the combination of the so-called $GW$ approximation, giving access to reliable ionization energies and electron affinities, and the BSE formalism, able to model UV/Vis spectra, has shown to provide accurate singlet excitation energies with a typical error of $0.1$--$0.3$ eV. With a similar computational cost as time-dependent density-functional theory (TD-DFT), BSE is able to provide an accuracy on par with the most accurate global and range-separated hybrid functionals without the unsettling choice of the exchange-correlation functional, resolving further known issues (\textit{e.g.}, charge-transfer excitations). In this \textit{Perspective} article, we provide a historical overview of BSE, with a particular focus on its condensed-matter roots. We also propose a critical review of its strengths and weaknesses in different chemical situations., Comment: 13 pages, 3 figures, Perspective review article
- Published
- 2020
- Full Text
- View/download PDF
43. Density-Based Basis-Set Incompleteness Correction for
- Author
-
Pierre-François, Loos, Barthélémy, Pradines, Anthony, Scemama, Emmanuel, Giner, and Julien, Toulouse
- Abstract
Similar to other electron correlation methods, many-body perturbation theory methods based on Green's functions, such as the so-called
- Published
- 2020
44. Green Functions and Self-Consistency: Insights From the Spherium Model
- Author
-
Pina Romaniello, Jorge Berger, Pierre-François Loos, Méthodes et outils de la chimie quantique (LCPQ), Laboratoire de Chimie et Physique Quantiques ( LCPQ ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), Systèmes de Fermions Finis - Agrégats (LPT), Laboratoire de Physique Théorique - IRSAMC ( LPT ), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de Physique Théorique (LPT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Coulomb operator ,Surface (mathematics) ,Computation ,FOS: Physical sciences ,Electron ,Classification of discontinuities ,01 natural sciences ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,Ionization ,0103 physical sciences ,Statistical physics ,Physical and Theoretical Chemistry ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Spherium ,Chemical Physics (physics.chem-ph) ,Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Electronic correlation ,Computational Physics (physics.comp-ph) ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Other Condensed Matter ,[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry ,Physics - Computational Physics ,Other Condensed Matter (cond-mat.other) - Abstract
We report an exhaustive study of the performance of different variants of Green function methods for the spherium model in which two electrons are confined to the surface of a sphere and interact via a genuine long-range Coulomb operator. We show that the spherium model provides a unique paradigm to study electronic correlation effects from the weakly correlated regime to the strongly correlated regime, since the mathematics are simple while the physics is rich. We compare perturbative GW, partially self-consistent GW and second-order Green function (GF2) methods for the computation of ionization potentials, electron affinities, energy gaps, correlation energies as well as singlet and triplet neutral excitations by solving the Bethe-Salpeter equation (BSE). We discuss the problem of self-screening in GW and show that it can be partially solved with a second-order screened exchange correction (SOSEX). We find that, in general, self-consistency deteriorates the results with respect to those obtained within perturbative approaches with a Hartree-Fock starting point. Finally, we unveil an important problem of partial self-consistency in GW: in the weakly correlated regime, it can produce artificial discontinuities in the self-energy caused by satellite resonances with large weights., 11 pages, 7 figures
- Published
- 2018
45. How accurate are EOM-CC4 vertical excitation energies?
- Author
-
Denis Jacquemin, Pierre-François Loos, Devin A. Matthews, Filippo Lipparini, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), European Project: 863481,PTEROSOR, Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Chemical Physics (physics.chem-ph) ,Physics ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Physics and Astronomy ,Computational Physics (physics.comp-ph) ,Molecular systems ,010402 general chemistry ,01 natural sciences ,Full configuration interaction ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,Excited state ,0103 physical sciences ,Physical and Theoretical Chemistry ,Atomic physics ,Physics - Computational Physics ,Excitation - Abstract
We report the first investigation of the performance of EOM-CC4 -- an approximate equation-of-motion coupled-cluster model which includes iterative quadruple excitations -- for vertical excitation energies in molecular systems. By considering a set of 28 excited states in 10 small molecules for which we have computed CCSDTQP and FCI reference energies, we show that, in the case of excited states with a dominant contribution from the single excitations, CC4 yields excitation energies with sub-kJ~mol$^{-1}$ accuracy (i.e., error below $0.01$ eV), in very close agreement with its more expensive CCSDTQ parent. Therefore, if one aims at high accuracy, CC4 stands as a highly competitive approximate method to model molecular excited states, with a significant improvement over both CC3 and CCSDT. Our results also evidence that, although the same qualitative conclusions hold, one cannot reach the same level of accuracy for transitions with a dominant contribution from the double excitations., 6 pages, 2 figures
- Published
- 2021
46. Chemically Accurate Excitation Energies With Small Basis Sets
- Author
-
Anthony Scemama, Julien Toulouse, Emmanuel Giner, Pierre-François Loos, Laboratoire de chimie théorique (LCT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
- Subjects
FOS: Physical sciences ,General Physics and Astronomy ,010402 general chemistry ,01 natural sciences ,Molecular physics ,chemistry.chemical_compound ,symbols.namesake ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,0103 physical sciences ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,Methylene ,Adiabatic process ,Basis set ,Chemical Physics (physics.chem-ph) ,Physics ,Valence (chemistry) ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Computational Physics (physics.comp-ph) ,Configuration interaction ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry ,Excited state ,Rydberg formula ,symbols ,Density functional theory ,Physics - Computational Physics ,Excitation - Abstract
By combining extrapolated selected configuration interaction (sCI) energies obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm with the recently proposed short-range density-functional correction for basis-set incompleteness [Giner et al.,J. Chem. Phys. 2018, 149, 194301], we show that one can get chemically accurate vertical and adiabatic excitation energies with, typically, augmented double-$\zeta$ basis sets. We illustrate the present approach on various types of excited states (valence, Rydberg, and double excitations) in several small organic molecules (methylene, water, ammonia, carbon dimer and ethylene). The present study clearly evidences that special care has to be taken with very diffuse excited states where the present correction does not catch the radial incompleteness of the one-electron basis set., Comment: 9 pages, 6 figures
- Published
- 2019
47. Cross-Comparisons between Experiment, TD-DFT, CC, and ADC for Transition Energies
- Author
-
Cinthia Suellen, Denis Jacquemin, Pierre-François Loos, R.G. Freitas, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Chimie Et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
Physics ,010304 chemical physics ,Mean squared error ,01 natural sciences ,Computer Science Applications ,Computational physics ,Hybrid functional ,Organic molecules ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Coupled cluster ,Atomic electron transition ,Yield (chemistry) ,0103 physical sciences ,Physical and Theoretical Chemistry ,Absorption (electromagnetic radiation) ,Wave function ,ComputingMilieux_MISCELLANEOUS - Abstract
Considering 41 electronic transitions in small- and medium-sized organic molecules, we benchmark the performances of 36 hybrid functionals within time-dependent density-functional theory (TD-DFT) and nine wave function theory (WFT) methods [CCSDT, CC3, CCSDT-3, CCSDR(3), CCSD, CC2, ADC(3), ADC(2), and SOS-ADC(2)]. Compared to highly accurate experimental 0-0 energies, it turns out that all coupled cluster (CC) approaches that include contributions from the triples [i.e., CCSDT, CC3, CCSDT-3 and CCSDR(3)] deliver a root-mean-square error (RMSE) smaller than or equal to 0.05 eV. The remaining WFT methods [i.e., CCSD, CC2, ADC(3), ADC(2), and SOS-ADC(2)] yield larger deviations with RMSE lying between 0.11 and 0.27 eV. Irrespective of the exchange-correlation functional, TD-DFT yields larger deviations (RMSE ⩾ 0.30 eV). For vertical transitions without clear experimental equivalents (such as vertical absorption and fluorescence), a comparison between TD-DFT and CC3 provides a globally unchanged ranking of the various functionals. However, the errors on emission energies tend to be larger than on absorption energies, hinting that studying the latter property is not sufficient to gain a complete view of TD-DFT's performances. Finally, by cross-comparisons between TD-DFT and WFT, we observe that the WFT method selected as reference significantly impacts the conclusions regarding the overall accuracy of a given exchange-correlation functional. For example, for vertical absorption energies, the "best" functional is TPSSh (RMSE = 0.29 eV) based on CC3 reference energies, while LC-ωPBE (RMSE = 0.12 eV) is superior to the other functionals when one considers ADC(3) as the reference method.
- Published
- 2019
48. Quantum Package 2.0: An Open-Source Determinant-Driven Suite of Programs
- Author
-
Kevin Gasperich, Anthony Scemama, Mickaël Véril, Julien Toulouse, Roland Assaraf, Michel Caffarel, Grégoire David, Thomas Applencourt, Anthony Ferté, Pierrette Barbaresco, Barthélémy Pradines, Julien Paquier, Yann Garniron, Pierre-François Loos, Nicolas Renon, Anouar Benali, Jean-Paul Malrieu, Emmanuel Giner, Peter Reinhardt, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre Interuniversitaire de Calcul de Toulouse (CICT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Institut de Chimie Radicalaire (ICR), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Systèmes étendus et magnétisme (LCPQ) (SEM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), and Université de Toulouse (UT)-Université de Toulouse (UT)
- Subjects
Computer science ,Atomic Physics (physics.atom-ph) ,Computation ,FOS: Physical sciences ,computer.software_genre ,Full configuration interaction ,01 natural sciences ,Computational science ,Physics - Atomic Physics ,Set (abstract data type) ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,0103 physical sciences ,Plug-in ,Code generation ,Physical and Theoretical Chemistry ,Programmer ,Wave function ,Massively parallel ,Chemical Physics (physics.chem-ph) ,Multi-core processor ,010304 chemical physics ,Strongly Correlated Electrons (cond-mat.str-el) ,Computational Physics (physics.comp-ph) ,Supercomputer ,Computer Science Applications ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,Coupled cluster ,Perturbation theory (quantum mechanics) ,computer ,Physics - Computational Physics - Abstract
\textsc{Quantum Package} is an open-source programming environment for quantum chemistry specially designed for wave function methods. Its main goal is the development of determinant-driven selected configuration interaction (sCI) methods and multi-reference second-order perturbation theory (PT2). The determinant-driven framework allows the programmer to include any arbitrary set of determinants in the reference space, hence providing greater methodological freedoms. The sCI method implemented in \textsc{Quantum Package} is based on the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm which complements the variational sCI energy with a PT2 correction. Additional external plugins have been recently added to perform calculations with multireference coupled cluster theory and range-separated density-functional theory. All the programs are developed with the IRPF90 code generator, which simplifies collaborative work and the development of new features. \textsc{Quantum Package} strives to allow easy implementation and experimentation of new methods, while making parallel computation as simple and efficient as possible on modern supercomputer architectures. Currently, the code enables, routinely, to realize runs on roughly 2\,000 CPU cores, with tens of millions of determinants in the reference space. Moreover, we have been able to push up to 12\,288 cores in order to test its parallel efficiency. In the present manuscript, we also introduce some key new developments: i) a renormalized second-order perturbative correction for efficient extrapolation to the full CI limit, and ii) a stochastic version of the CIPSI selection performed simultaneously to the PT2 calculation at no extra cost., 21 pages, 8 figures
- Published
- 2019
49. A Density-Based Basis-Set Correction For Wave Function Theory
- Author
-
Anthony Scemama, Julien Toulouse, Pierre-François Loos, Emmanuel Giner, Barthélémy Pradines, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Gaussian ,FOS: Physical sciences ,010402 general chemistry ,01 natural sciences ,Set (abstract data type) ,Density based ,symbols.namesake ,Condensed Matter - Strongly Correlated Electrons ,Physics - Chemical Physics ,0103 physical sciences ,General Materials Science ,Statistical physics ,Limit (mathematics) ,Physical and Theoretical Chemistry ,Physics::Chemical Physics ,Wave function ,Basis set ,Chemical Physics (physics.chem-ph) ,Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,010304 chemical physics ,Basis (linear algebra) ,Function (mathematics) ,Computational Physics (physics.comp-ph) ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,symbols ,Physics - Computational Physics - Abstract
We report a universal density-based basis-set incompleteness correction that can be applied to any wave function method. The present correction, which appropriately vanishes in the complete basis set (CBS) limit, relies on short-range correlation density functionals (with multi-determinant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis-set incompleteness error. Contrary to conventional RS-DFT schemes which require an \textit{ad hoc} range-separation \textit{parameter} $\mu$, the key ingredient here is a range-separation \textit{function} $\mu(\bf{r})$ that automatically adapts to the spatial non-homogeneity of the basis-set incompleteness error. As illustrative examples, we show how this density-based correction allows us to obtain CCSD(T) atomization and correlation energies near the CBS limit for the G2 set of molecules with compact Gaussian basis sets., Comment: 7 pages, 2 figures and 1 table (supporting information available)
- Published
- 2019
50. Chemically Accurate 0-0 Energies with not-so-Accurate Excited State Geometries
- Author
-
Denis Jacquemin, Pierre-François Loos, Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université de Nantes (UN), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
- Subjects
Chemical Physics (physics.chem-ph) ,Physics ,Systematic error ,010304 chemical physics ,Series (mathematics) ,Matching (graph theory) ,FOS: Physical sciences ,Vertical transition ,Computational Physics (physics.comp-ph) ,01 natural sciences ,Computer Science Applications ,Computational physics ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Quality (physics) ,Atomic electron transition ,Physics - Chemical Physics ,Excited state ,0103 physical sciences ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Physical and Theoretical Chemistry ,Wave function ,Physics - Computational Physics - Abstract
Using a series of increasingly refined wavefunction methods able to tackle electronic excited states, namely ADC(2), CC2, CCSD, CCSDR(3) and CC3, we investigate the interplay between geometries and 0-0 energies. We show that, due to a strong and nearly systematic error cancelation between the vertical transition and geometrical reorganization energies, CC2 and CCSD structures can be used to obtain chemically-accurate 0-0 energies, though the underlying geometries are rather far from the reference ones and would deliver significant errors for many chemical and physical properties. This indicates that obtaining 0-0 energies matching experiment does not demonstrate the quality of the geometrical parameters. In contrast, accurate computation of vertical excitation energies is mandatory in order to reach chemical accuracy. By determining CC3 total energies on CCSD structures, we model a large set of compounds (including radicals) and electronic transitions (including singlet-triplet excitations) and successfully reach chemical accuracy in a near systematic way. Indeed, for this particular set, our protocol delivers a mean absolute error as small as $0.032$ eV, chemical accuracy (error smaller than $1$ kcal.mol$^{-1}$ or $0.043$ eV) being obtained in 80\%\ of the cases. In only three cases the error exceeds $0.15$ eV which is of the order of the typical error provided by TD-DFT or second-order wavefunction methods for this particular property. The present composite protocol is therefore very effective despite the fact that the geometries may not be considered as very accurate., 11 pages, 5 figures
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.