Back to Search Start Over

Diffusion Monte Carlo using domains in configuration space

Authors :
Roland Assaraf
Emmanuel Giner
Vijay Gopal Chilkuri
Pierre-François Loos
Anthony Scemama
Michel Caffarel
Laboratoire de chimie théorique (LCT)
Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Systèmes étendus et magnétisme (LCPQ) (SEM)
Laboratoire de Chimie et Physique Quantiques Laboratoire (LCPQ)
Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO)
European Project: 863481,PTEROSOR
European Project: 952165,H2020,H2020-INFRAEDI-2019-1,Trex(2020)
Source :
Physical Review B, Physical Review B, 2023, 107 (3), pp.035130. ⟨10.1103/PhysRevB.107.035130⟩
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

The sampling of the configuration space in diffusion Monte Carlo (DMC) is done using walkers moving randomly. In a previous work on the Hubbard model [\href{https://doi.org/10.1103/PhysRevB.60.2299}{Assaraf et al.~Phys.~Rev.~B \textbf{60}, 2299 (1999)}], it was shown that the probability for a walker to stay a certain amount of time in the same state obeys a Poisson law and that the on-state dynamics can be integrated out exactly, leading to an effective dynamics connecting only different states. Here, we extend this idea to the general case of a walker trapped within domains of arbitrary shape and size. The equations of the resulting effective stochastic dynamics are derived. The larger the average (trapping) time spent by the walker within the domains, the greater the reduction in statistical fluctuations. A numerical application to the Hubbard model is presented. Although this work presents the method for finite linear spaces, it can be generalized without fundamental difficulties to continuous configuration spaces.<br />14 pages, 4 figures

Details

Language :
English
ISSN :
24699950 and 24699969
Database :
OpenAIRE
Journal :
Physical Review B, Physical Review B, 2023, 107 (3), pp.035130. ⟨10.1103/PhysRevB.107.035130⟩
Accession number :
edsair.doi.dedup.....538d7d9f22a494fd8ed664ec8e2518fa