318 results on '"Michel Pons"'
Search Results
2. Numerical and computational strategy for pressure-driven steady-state simulation of oilfield production.
- Author
-
Pascal Floquet, Xavier Joulia, Alain Vacher, Martin Gainville, and Michel Pons
- Published
- 2009
- Full Text
- View/download PDF
3. Management of vapor release in secondary refrigeration processes based on hydrates involving CO2 as guest molecule
- Author
-
Anthony Delahaye, Laurence Fournaison, Michel Pons, and Ziad Youssef
- Subjects
Materials science ,Mechanical Engineering ,Clathrate hydrate ,Refrigeration ,Cold storage ,02 engineering and technology ,Building and Construction ,021001 nanoscience & nanotechnology ,7. Clean energy ,Refrigerant ,020401 chemical engineering ,Chemical engineering ,Volume (thermodynamics) ,Heat exchanger ,0204 chemical engineering ,Vapor-compression refrigeration ,0210 nano-technology ,Hydrate - Abstract
When used as secondary refrigerants for cold storage and refrigeration applications, hydrate slurries offer high-energy densities due to their significant latent heat of fusion. In this context, gas hydrates exhibit a feature not yet explored in the literature: vapor is released when hydrate crystals melt in the heat exchanger supplying cold to end users. This novel feature is investigated in this paper. First, the separation of the released vapor from the solid+liquid slurry is described. This is followed by a study of how the design of the storage system can be adapted to the use of gas hydrate slurries as secondary fluid and specifically the consequences on its volume. A model is developed, based on energy and mass balances, to determine the required storage volume. Two types of hydrates involving a gas are considered: the single hydrate of carbon dioxide and the mixed hydrate of tetra-n-butylphosphonium bromide (TBPB) plus CO2 . The results show that adding vapor compression to the process can save up to 75% of the total storage volume.
- Published
- 2019
- Full Text
- View/download PDF
4. Chemical vapor deposition of titanium nitride thin films: kinetics and experiments
- Author
-
Frédéric Mercier, Michel Pons, Elisabeth Blanquet, Juan Su, Raphaël Boichot, Science et Ingénierie des Matériaux et Procédés (SIMaP ), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Materials science ,chemistry.chemical_element ,02 engineering and technology ,Chemical vapor deposition ,01 natural sciences ,chemistry.chemical_compound ,TiN ,0103 physical sciences ,Decorative and functional coatings ,General Materials Science ,Texture (crystalline) ,Thin film ,010302 applied physics ,Supersaturation ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Titanium nitride ,Amorphous solid ,Chemical Vapor Deposition ,chemistry ,Chemical engineering ,0210 nano-technology ,Tin ,Titanium - Abstract
International audience; Titanium nitride (TiN) films were grown by CVD (Chemical Vapor Deposition) from 11 titanium chlorides generated in situ by direct chlorination of titanium metal, ammonia (NH3) and 12 hydrogen (H2) as carrier gas on single crystal c-plane sapphire (Al2O3), cemented carbides (WC-Co), 13 stainless steel (AFNOR Z150CDV12) and amorphous graphite substrates. Kinetic pathways 14 involving four surface reactions has been proposed to simulate the growth rate. The proposed 15 model has been validated by experiments performed at different temperatures (650-1400 °C), 16 pressures (300-1000 Pa), with different amount of precursors (N/Ti ratio in gas phase) and on 17 different substrates. The study shows that on polycrystalline materials, the crystal orientation 18 depends on supersaturation while (111) preferred orientation is forced by underlying c-plane 19 sapphire whatever the supersaturation. The low N/Ti ratio in gas phase leads to low growth rate 20 and dense TiN film which is the key to obtain golden TiN. The high growth rate corresponds to 21 brown TiN. Globally, the study shows that golden color is independent from texture and is just the 22 natural aspect of a dense stoichiometric TiN layer. 23
- Published
- 2019
- Full Text
- View/download PDF
5. Coupling powder bed additive manufacturing and vapor phase deposition methods for elaboration of coated 3D Ti-6Al-4V architectures with enhanced surface properties
- Author
-
Frédéric Mercier, E. Gicquel, Jean-Jacques Blandin, Carmen Jiménez, Rémy Dendievel, Elisabeth Blanquet, Michel Pons, A. Moll, Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire des matériaux et du génie physique (LMGP ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Materials science ,02 engineering and technology ,Substrate (electronics) ,Surface finish ,Chemical vapor deposition ,engineering.material ,010402 general chemistry ,01 natural sciences ,Nitrides ,Coating ,chemistry.chemical_compound ,Atomic layer deposition ,Barrier layer ,Oxidation ,Materials Chemistry ,Deposition (phase transition) ,Titanium alloys ,Surfaces and Interfaces ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,CVD ,Titanium nitride ,0104 chemical sciences ,Surfaces, Coatings and Films ,chemistry ,Chemical engineering ,engineering ,0210 nano-technology - Abstract
International audience; We propose an innovative process coupling powder bed additive manufacturing by Electron Beam Melting (EBM) with Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD) to develop 3D Ti-6Al-4V structures covered with AlN coating. Despite of the high reactivity of Ti-6Al-4V with nitrogen, thick (~10 μm) and conformal AlN films are deposited by CVD on Ti-6Al-4V substrates with high surface roughness. An AlN underlayer deposited by ALD is necessary to mitigate the reaction between Ti-6Al-4V and the nitrogen precursor NH 3(g) and to limit the formation of brittle titanium nitride phases. We have thus achieved an adherent coating without any modification of the Ti-6Al-4V microstructure at the core of the substrate. We show that a 7 μm thick AlN coating is efficient in protecting Ti-6Al-4V against cyclic oxidation at 650 • C for at least 650 h. This study opens new opportunities for the design of coated 3D Ti-6Al-4V structures for use in high temperature oxidizing environments.
- Published
- 2021
- Full Text
- View/download PDF
6. Oxidation and high-temperature radiative properties of the Kanthal Super ER intermetallic alloy
- Author
-
Johann Colas, Ludovic Charpentier, Jérôme Esvan, Eric Bêche, Danying Chen, Flavien Mercier, Domingos De Sousa Meneses, Michel Pons, Marianne Balat-Pichelin, Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Conditions Extrêmes et Matériaux : Haute Température et Irradiation (CEMHTI), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université d'Orléans (UO), ANR-16-CE08-0019,2MAC-CSP,Revêtements Avancés Multicouches Multifonctionnels pour les Centrales Solaires à Concentration(2016), Laboratoire procédés, matériaux et énergie solaire (PROMES-CNRS), Université d'Orléans (UO)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut polytechnique de Grenoble (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Université de Perpignan Via Domitia - UPVD (FRANCE)
- Subjects
Materials science ,Intermetallics ,020209 energy ,General Chemical Engineering ,Matériaux ,Alloy ,Intermetallic ,02 engineering and technology ,Temperature cycling ,engineering.material ,7. Clean energy ,Corrosion ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Critical point (thermodynamics) ,Oxidation ,0202 electrical engineering, electronic engineering, information engineering ,Emissivity ,XPS ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,B. SEM ,Solar furnace ,Metallurgy ,A. Intermetallics ,Thermal cycling ,C. Oxidation ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,B. Thermal cycling ,Creep ,B. Raman spectroscopy ,SEM ,Raman spectroscopy ,engineering ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0210 nano-technology ,B. XPS - Abstract
International audience; The oxidation resistance of receivers is a critical point in the development of plants using solar tower technology. Intermetallics in Mo-Si-Al system present oxidation maximum temperature and creep resistance superior to the ones of the currently used Ni-based alloys. We followed here the oxidation resistance of such intermetallic exposed to different treatments in air: long-term oxidation (up to 700 h) at 1373 K, and for several cycles of 20 minutes in solar furnace. The normal spectral emissivity is measured up to 1640 K in air, and our main positive conclusion is this property is not degraded by the oxidation.
- Published
- 2021
- Full Text
- View/download PDF
7. Modeling multilayer coating systems in solar receivers
- Author
-
Danying Chen, Frédéric Mercier, Johann Colas, Alexandre Crisci, Michel Pons, Marianne Balat-Pichelin, Raphaël Boichot, Ludovic Charpentier, Science et Ingénierie des Matériaux et Procédés [2020-....] (SIMaP [2020-....]), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2020-....] (UGA [2020-....])-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2020-....] (Grenoble INP [2020-....]), Université Grenoble Alpes [2020-....] (UGA [2020-....]), Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Work (thermodynamics) ,Materials science ,Scale (ratio) ,Oxide ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,engineering.material ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,Coating ,Residual stress ,0103 physical sciences ,Materials Chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010302 applied physics ,Surfaces and Interfaces ,General Chemistry ,Mechanics ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Temperature gradient ,Creep ,chemistry ,engineering ,Relaxation (approximation) ,0210 nano-technology - Abstract
International audience; A comprehensive model to predict the stress evolution in a multilayer coating during its use in solar receivers is proposed. The model takes into account residual stress in the coatings, thermal gradient in the structure and high temperature phenomena like oxide scale growth and creep relaxation. The numerical tool developed in this work can help to understand the complex interplay of these phenomena occurring in all the materials involved. Additionally, the present model can be used to assess high temperature data like creep when it is compared with an experimental case.
- Published
- 2020
- Full Text
- View/download PDF
8. Prediction of dislocation density in AlN or GaN films deposited on (0001) sapphire
- Author
-
Michel Pons, Sabine Lay, Frédéric Mercier, Raphaël Boichot, G. Giusti, Elisabeth Blanquet, Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), SIL’TRONIX-ST, Archamps, France, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Lay, Sabine
- Subjects
010302 applied physics ,Threading dislocations ,[CHIM.MATE] Chemical Sciences/Material chemistry ,Materials science ,Condensed matter physics ,Mechanical Engineering ,Nucleation ,Physics::Optics ,02 engineering and technology ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Nitride ,021001 nanoscience & nanotechnology ,01 natural sciences ,Formalism (philosophy of mathematics) ,Condensed Matter::Materials Science ,Mechanics of Materials ,0103 physical sciences ,Solid mechanics ,Sapphire ,Sapphire substrate ,[CHIM]Chemical Sciences ,General Materials Science ,Dislocation ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; The origin of threading dislocations (TDs) in nitride films is not completely understood but it is well established that they degrade the film properties. This work investigates the assumption that they arise from the interface between the film and sapphire substrate owing to small in-plane rotations between nitride domains. Bollmann’s formalism is first used to determine the characteristics of dislocations at the nitride film/sapphire interface that compensate both for the parametric misfit and a small in-plane rotation of the film as frequently observed. It is shown that the dislocation density and line direction depend on the rotation angle. When islands grow and coalesce in the nucleation layer, some interfacial dislocations orientate along [0001] in the boundaries between domains and transform to so-called TDs. The amount of TDs lying in the boundaries between nitride domains is calculated as a function of the rotation angle. Estimations of TD density in the nucleation layer are deduced for a range of domain sizes and compared with experimental values of the literature.
- Published
- 2020
- Full Text
- View/download PDF
9. Reactive chemical vapor deposition of heteroepitaxial Ti1−xAlxN films
- Author
-
Sabine Lay, H. Shimoda, Michel Pons, Elisabeth Blanquet, Frédéric Mercier, Science et Ingénierie des Matériaux et Procédés (SIMaP ), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
010302 applied physics ,Materials science ,Aluminium nitride ,Diffusion ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,General Chemistry ,Chemical vapor deposition ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Epitaxy ,01 natural sciences ,Monocrystalline silicon ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,0103 physical sciences ,Tetrachloride ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Thin film ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Titanium - Abstract
Processing of Ti1-xAlxN thin films by the reactive chemical vapor deposition (R-CVD) technique has been performed from the reaction between a titanium tetrachloride (TiCl4-H-2) gas mixture and (0001) c-plane monocrystalline aluminium nitride (AlN) films at high temperatures, in the 800-1200 degrees C range. As a typical result, the growth of epitaxial 70 nm thick layers of (111)-fcc Ti1-xAlxN (0.05 = x = 0.65) has been processed. Multicomponent mass transport and diffusion modelling is proposed to assess the experimental results. A good agreement is found between the experimental thickness of the transformed zones and the calculated titanium diffusion length in AlN. Fcc-Ti1-xAlxN phase formation can be regarded as a diffusion-controlled mechanism. The novel experimental methodology developed in this work could help in understanding the complex formation and stability of this technologically important material.
- Published
- 2018
- Full Text
- View/download PDF
10. Exergy Analysis and Process Optimization with Variable Environment Temperature
- Author
-
Michel Pons, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), and Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Exergy ,Control and Optimization ,020209 energy ,Energy Engineering and Power Technology ,02 engineering and technology ,Thermal energy storage ,7. Clean energy ,thermodynamics ,020401 chemical engineering ,process optimization ,0202 electrical engineering, electronic engineering, information engineering ,second law ,Process optimization ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0204 chemical engineering ,Electrical and Electronic Engineering ,Engineering (miscellaneous) ,Mechanical energy ,reference dead state ,[PHYS]Physics [physics] ,Renewable Energy, Sustainability and the Environment ,Component (thermodynamics) ,methodology ,Mechanics ,Variable (computer science) ,Environmental science ,Current (fluid) ,Constant (mathematics) ,Energy (miscellaneous) - Abstract
International audience; In its usual definition, exergy cancels out at the ambient temperature which is thus taken both as a constant and as a reference. When the fluctuations of the ambient temperature, obviously real, are considered, the temperature where exergy cancels out can be equated, either to the current ambient temperature (thus variable), or to a constant reference temperature. Thermodynamic consequences of both approaches are mathematically derived. Only the second approach insures that minimizing the exergy loss maximizes performance in terms of energy. Moreover, it extends the notion of reversibility to the presence of an ideal heat storage. When the heat storage is real (non-ideal), the total exergy loss includes a component specifically related to the heat exchanges with variable ambient air. The design of the heat storage can then be incorporated into an optimization procedure for the whole process. That second approach with a constant reference is exemplified in the case study of heat pumping for heating a building in wintertime. The results show that the so-obtained total exergy loss is the lost mechanical energy, a property that is not verified when exergy analysis is conducted following the first approach.
- Published
- 2019
- Full Text
- View/download PDF
11. Revisited Thermal and Plasma Enhanced Atomic Layer Deposition combined with Chemical Vapor Deposition processes of metal nitrides: challenges and opportunities
- Author
-
Elisabeth Blanquet, Arnaud Mantoux, Frederic Mercier, Raphael Boichot, Ioana Nuta, Sabine Lay, Michel Pons, Carmen Jiménez, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire des matériaux et du génie physique (LMGP ), and Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM]Chemical Sciences ,[CHIM.MATE]Chemical Sciences/Material chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
12. High temperature properties of AlN coatings deposited by chemical vapor deposition for solar central receivers
- Author
-
Danying Chen, Frédéric Mercier, C. Escape, Michel Pons, Ludovic Charpentier, Raphaël Boichot, Johann Colas, Marianne Balat-Pichelin, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), ANR-16-CE08-0019,2MAC-CSP,Revêtements Avancés Multicouches Multifonctionnels pour les Centrales Solaires à Concentration(2016), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Materials science ,02 engineering and technology ,Chemical vapor deposition ,engineering.material ,7. Clean energy ,01 natural sciences ,Thermal expansion ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Thermal conductivity ,Coating ,0103 physical sciences ,Concentrated solar power ,Materials Chemistry ,Emissivity ,Composite material ,010302 applied physics ,Solar furnace ,Surfaces and Interfaces ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Heat transfer ,engineering ,0210 nano-technology - Abstract
International audience; There is an increasing interest for tower concentrated solar power (CSP) systems which can work at temperatures higher than 1073 K to optimize the efficiency. One of the challenges is to design the receiver that will be heated at high temperatures in air. On the contrary to coatings in gas turbine engine, the coating/substrate system must have a high thermal conductivity to ensure a good heat transfer to the fluid. Aluminum nitride (AlN) coating, deposited by chemical vapor deposition at 1373 K at a growth rate of 10-50 μm h −1 , is selected for its high thermal conductivity, low thermal expansion coefficient, high temperature stability and its ability to develop stable alumina scales above 1273 K. Cast and ODS (Oxide Dispersion Strengthened) FeCrAl alloys, also alumina-formers, are chosen as model substrates to reduce the influencing parameters in real-life receivers and to study the potential of these coatings. Accelerated cyclic oxidation tests and emissivity measurements allow the evaluation of AlN coatings as materials for high temperature CSP receivers. The multilayered systems show low degradation after hundreds of thermal cycles at 1073 K in air and can support higher temperatures (1373 K) for 100 to 500 h depending on the coating thickness. Nevertheless the fast cyclic oxidations in solar furnace generated cracks through the coatings. The measurement of the optical properties also revealed a decrease of the absorptivity after oxidation.
- Published
- 2019
- Full Text
- View/download PDF
13. AlN coatings of 3D titanium alloy structures elaborated by Electron Beam Melting
- Author
-
Adrien Moll, Melek Genc, Rémy Dendievel, Guilhem Martin, Jean-Jacques Blandin, Michel Pons, Carmen Jimenez, Frederic Mercier, Elisabeth Blanquet, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Institut National de l'Environnement Industriel et des Risques (INERIS)
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
14. High temperature chemical vapor deposition of aluminum nitride thin films and coatings: properties and applications
- Author
-
Michel Pons, Danying Chen, Manoel Jacquemin, Juan Su, Raphael Boichot, Frederic Mercier, Elisabeth Blanquet, Sabine Lay, Johan Colas, Ludovic Charpentier, Marianne Balat-Pichelin, Pons, Michel, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Procédés, Matériaux et Energie Solaire (PROMES), and Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.MAT] Engineering Sciences [physics]/Materials ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2019
15. Scale up of a DLI-MOCVD process for the internal treatment of a batch of 16 nuclear fuel cladding segments with a CrCx protective coating
- Author
-
Raphaël Boichot, Eric Monsifrot, Michel Pons, Frédéric Schuster, Fouzi Addou, Hicham Maskrot, Alexandre Michau, Francis Maury, Yoan Gazal, Thomas Duguet, Service d'études analytiques et de réactivité des surfaces (SEARS), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut polytechnique de Grenoble (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Dephis (FRANCE), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Materials science ,Matériaux ,Scale-up ,02 engineering and technology ,Chemical vapor deposition ,engineering.material ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,Coating ,0103 physical sciences ,Materials Chemistry ,DLI-MOCVD ,Deposition (phase transition) ,Metalorganic vapour phase epitaxy ,Composite material ,Nuclear fuel ,EATF ,Nuclear fuel claddings ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Cladding (fiber optics) ,Cr-based coatings ,Surfaces, Coatings and Films ,Coolant ,chemistry ,engineering ,0210 nano-technology ,Chromium carbide ,Internal protection - Abstract
International audience; Direct liquid injection – metalorganic chemical vapor deposition (DLI-MOCVD) is the most advanced process dedicated to the internal protection of nuclear fuel cladding in accident conditions such as loss of coolant. It allows the deposition of an amorphous, glassy-like chromium carbide CrCx coating which is resistant against high-temperature oxidation in air and steam. Since the above-mentioned material characterizations demonstrated that coatings possessed the appropriate protection properties, the DLI-MOCVD process was scaled-up. First, a joint development between experimental and numerical studies led to a deposition inside a 1 m long cladding segment with a coating of sufficiently large and uniform thickness. Optimized reactor parameters consist in a combination of low temperature (~600 K) and low pressure (~600 Pa) with a high vapor flow rate of reactive species in the reactor ensuring a short residence time. The second phase of the scale-up consisted in coating simultaneously three, then sixteen segments in a single run. 3D computational simulations of the deposition process assisted the development of specific flanges designed to distribute homogeneously the reactive vapor into the three or sixteen cladding tubes. Experimental conditions have been extrapolated from one to three and to sixteen cladding segments, resulting in the deposition of the CrCx coating inside all segments with a relatively uniform partition. Overall, this paper demonstrates the feasibility of the deposition of CrCx coating in a bundle of several, up to sixteen, nuclear fuel cladding segments of 1 m in length (ID 8 mm), in order to protect them during accident conditions. This “batch demonstration” is a first step in the course of DLI-MOCVD technological transfer. Next step will be the deposition in a full-length cladding tube (4 m) that is already supported by numerical predictions.
- Published
- 2019
- Full Text
- View/download PDF
16. Deposition and characterization of (Ti, Al)N coatings deposited by thermal LPCVD in an industrial reactor
- Author
-
Evelyne Fischer, Michel Pons, Frédéric Sanchette, Jaafar Ghanbaja, Florent Uny, Salim Lamri, Elisabeth Blanquet, Frédéric Schuster, Sofiane Achache, Laboratoire des Systèmes Mécaniques et d'Ingénierie Simultanée (LASMIS), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Lisi Aerospace, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Morphology ,Materials science ,chemistry.chemical_element ,02 engineering and technology ,Chemical vapor deposition ,engineering.material ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Ti1−xAlxN ,Coating ,Industrial reactor ,Aluminium ,Hardness ,0103 physical sciences ,Thermal ,Materials Chemistry ,Oxidation resistance ,Nanolamellae ,PCVD ,010302 applied physics ,Drop (liquid) ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,Surfaces, Coatings and Films ,Chemical engineering ,chemistry ,engineering ,0210 nano-technology - Abstract
International audience; The increased need for protecting cutting tools has led to the development of more and more efficient coatings. Ti-Al-N is one of the most studied systems in the hard coating industry due to the high hardness and good oxidation resistance of Ti1−xAlxN coatings. The development of LPCVD processes has led to the discovery of new microstructures and morphologies. In this study, we discuss the microstructural and morphological changes caused by varying the aluminum content in films deposited by low pressure thermal CVD in an industrial reactor at low carrier gas flow and relatively high pressure (>4 kPa). Coatings were characterized using FE-SEM, XRD and TEM analysis, revealing the growth of nanolamellae with modulated Al and Ti contents for the lowest Al containing coatings. The coatings with the highest Al contents were also found to show particular cube-shaped grains with a micromodulation of composition. Experimental Al content values are higher than the calculated one and their evolutions with the AlCl3/(AlCl3 + TiCl4) molar ratio are similar. The hardness and oxidation resistance were characterized and compared with available data in literature. Higher hardness is obtained for coatings having an Al content up to x = 0.65 and a hardness drop is found for higher Al contents. The oxidation resistance of the coatings rises continuously with an increasing Al content.
- Published
- 2019
- Full Text
- View/download PDF
17. Growth of boron nitride films on w-AlN (0001), 4° off-cut 4H-SiC (0001), W (110) and Cr (110) substrates by Chemical Vapor Deposition
- Author
-
Roman Reboud, Raphaël Boichot, Sabine Lay, Michel Pons, Thierry Encinas, Alexandre Crisci, Stéphane Coindeau, Mikhail Chubarov, Frédéric Mercier, Elisabeth Blanquet, and N. Coudurier
- Subjects
010302 applied physics ,Materials science ,Scanning electron microscope ,Wide-bandgap semiconductor ,Analytical chemistry ,Nanotechnology ,02 engineering and technology ,General Chemistry ,Chemical vapor deposition ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Boron trichloride ,chemistry.chemical_compound ,chemistry ,Electron diffraction ,Boron nitride ,0103 physical sciences ,General Materials Science ,Thin film ,0210 nano-technology - Abstract
Boron Nitride is a promising group 13-group 15 compound material that exhibits various interesting properties like wide band gap, chemical stability, attractive mechanical properties and other. The growth behavior of this material has not been investigated in sufficient details to tailor properties of the resulting films. In this work we present the results on the growth of turbostratic boron nitride (t-BN) thin films at a relatively high growth rate of 3 mu m/h with the aim to investigate the potential use of boron trichloride in combination with ammonia as precursors for growth. Deposition experiments were conducted in a vertical cold wall high temperature chemical vapor deposition reactor in the temperature range 1000 degrees C-1700 degrees C depending on the substrate used. Templates of w-AlN (0001), 4 degrees off-cut 4H-SiC (0001), Cr (110) and W (110) were employed as substrates for the BN growth. As-grown BN layers were characterized by Scanning Electron Microscopy, X-Ray Diffraction, Electron Diffraction and Raman Spectroscopy. The results indicate that temperature and N/B ratio have a great influence on the crystallinity of the deposited films. For AlN and SiC substrates, a temperature of 1600 degrees C and N/B ratio in range between 3 and 7.5 were identified as the best parameters for the growth of a 2 mu m thick t-BN layer with a spacing between basal planes of about 3.36 angstrom compare to the 3.33 angstrom spacing between basal planes of hexagonal or rhombohedral BN (h-BN or r-BN). For Cr and W substrates which have a lower mismatch with h-BN (1 and 8.8 %), layers of t-BN were deposited at much lower temperature (1000 degrees C-1150 degrees C) with a spacing between basal planes of 3.5 angstrom and morphology similar to that observed on SiC substrates. We obtained t-BN layers with in plane strong disorder but out of plane orientation (c-axis normal to the surface).
- Published
- 2016
- Full Text
- View/download PDF
18. High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubes
- Author
-
Raphaël Boichot, M. Le Saux, Frédéric Schuster, Jean-Christophe Brachet, Fernando Lomello, Alexandre Michau, Francis Maury, Michel Pons, Elodie Rouesne, Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut polytechnique de Grenoble (FRANCE), Université Paris-Saclay (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Service de Recherches Métallurgiques Appliquées - SRMA (Gif sur Yvette, France), Service d'études analytiques et de réactivité des surfaces (SEARS), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Service des Recherches Métallurgiques Appliquées (SRMA), Département des Matériaux pour le Nucléaire (DMN), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National Polytechnique de Toulouse - INPT (FRANCE), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
Cladding (metalworking) ,Materials science ,Matériaux ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Carbide ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Chromium ,0103 physical sciences ,Oxidizing agent ,Materials Chemistry ,DLI-MOCVD ,010302 applied physics ,Quenching ,Nuclear fuel ,Protective coatings ,Metallurgy ,Oxidation resistance ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Cr-based coatings ,Surfaces, Coatings and Films ,Amorphous solid ,Corrosion study ,chemistry ,0210 nano-technology ,Loss-of-coolant accident - Abstract
International audience; For nuclear safety issues, there is an international effort to develop innovative “Enhanced Accident Tolerant Fuels” (EATF) materials. EATF cladding tubes are of particular interest because they constitute the first barrier against radioactive fission species dispersal in case of accidental scenario such as LOCA (LOss of Coolant Accident). Actual nuclear fuel claddings are made from Zr-based alloys and to increase safety margins, both mechanical strength and resistance to high-temperature oxidation have to be improved. Several alternatives using high-temperature oxidation resistant coatings for outer-wall protection have been proposed worldwide but there is currently no solution for the inner-wall protection. In order to resist to high temperature steam environment upon LOCA transients, internal Cr-based coatings deposited by DLI-MOCVD (Direct Liquid Injection of MetalOrganic precursors) were investigated. These hard metallurgical coatings could also be used in high-temperature corrosive environments as those encountered in aeronautics and other industries to protect 3D complex components. Thanks to a suitable chemistry of the liquid Cr precursor, bis(ethylbenzene)chromium, different coatings were deposited including: metal Cr, chromium carbides CrxCy and mixed carbides CrxSizCy. The high-temperature behavior of these Cr-based coatings under oxidizing atmospheres has been studied using several techniques and various oxidation tests including pure steam environment followed by water quenching down to room temperature to be representative of LOCA situations. Amorphous CrxCy coatings showed the most promising properties. For instance compared to uncoated substrate, they shift the catastrophic oxidation towards higher temperatures and delay the complete oxidation of the substrate at 1473K of >2h. The results are discussed in terms of oxidation mechanisms and protection of the fuel claddings inner surface deduced from fine characterizations of the samples before and after oxidation tests.
- Published
- 2018
- Full Text
- View/download PDF
19. Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition
- Author
-
Carmen Jiménez, Liang Tian, Michel Pons, S. Ponton, Fabien Volpi, M. Benz, Roman Reboud, Elisabeth Blanquet, Christophe Vallée, Gael Giusti, Alexandre Crisci, Laetitia Rapenne, Arnaud Mantoux, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), SIL’TRONIX-ST, Archamps, France, Laboratoire des matériaux et du génie physique (LMGP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés ( SIMaP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ) -Institut National Polytechnique de Grenoble ( INPG ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Laboratoire des matériaux et du génie physique ( LMGP ), Institut National Polytechnique de Grenoble ( INPG ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut polytechnique de Grenoble - Grenoble Institute of Technology ( Grenoble INP ), Laboratoire des Technologies de la Microélectronique ( LTM ), and Commissariat à l'énergie atomique et aux énergies alternatives ( CEA )
- Subjects
Materials science ,chemistry.chemical_element ,02 engineering and technology ,Nitride ,01 natural sciences ,Atomic layer deposition ,chemistry.chemical_compound ,Aluminium ,0103 physical sciences ,Materials Chemistry ,Silicon carbide ,C/AL ,Thin film ,Deposition (law) ,ComputingMilieux_MISCELLANEOUS ,computer.programming_language ,010302 applied physics ,Surfaces and Interfaces ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,chemistry ,Chemical engineering ,[ CHIM.MATE ] Chemical Sciences/Material chemistry ,0210 nano-technology ,computer ,Carbon - Abstract
Plasma enhanced atomic layer deposition (PE-ALD) of aluminum nitride (AlN) thin films often utilizes NH3 or a mixture of N2 and H2 as a plasma source. However, the possibility of separating the activation step from the nitridation step by using H2 alone as the plasma source has never been explored. In this paper, we study the deposition of AlN by PE-ALD by using trimethylaluminum, H2 plasma and NH3 for deposition temperatures below 400 °C. The self-limiting ALD growth was achieved between 325 °C and 350 °C. As a comparison, AlN was also deposited by thermal ALD (T-ALD), where surface reactions between TMA and NH3 occurred with reasonable growth rates only at temperatures above 400 °C. The PE-ALD films showed low oxygen (1.5 at.%) and carbon contaminations (1 at.%). The T-ALD films contained carbon (5 at.%) mainly attributed to the presence of C Al bonds that was insignificant in PE-ALD films. The flow rate of H2 used in H2 plasma was found to have a significant impact on the preferred orientation of AlN films, where higher H2 flow rate promoted the (002) preferred orientation. Besides, the electrical resistivities were probed to be 108 Ω cm, as expected in an insulating material. As an example, AlN was used to infiltrate porous sintered silicon carbide (SiC). Both AlN deposited by PE-ALD and by T-ALD operating with exposure mode deposited at 400 °C were attempted. Even though, there is a greater risk for TMA precursor to decompose at 400 °C, infiltration of AlN was more successful by T-ALD operating with exposure mode.
- Published
- 2018
- Full Text
- View/download PDF
20. Energy analysis of two-phase secondary refrigeration in steady-state operation, part 2: Exergy analysis and effects of phase change kinetics
- Author
-
Michel Pons, Anthony Delahaye, Didier Dalmazzone, Laurence Fournaison, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), Génie des procédés frigorifiques (UR GPAN), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris), Unité de Chimie et Procédés (UCP), LASIPS, COOLHYD, ANR-14-CE05-0045,Crisalhyd,Application de réfrigération secondaire par coulis d'hydrates de CO2 : de la cristallisation des hydrates à leur intégration dans des procédés de stockage et de transport de froid(2014), Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919), and Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
- Subjects
Exergy ,020209 energy ,clathrate ,ice ,02 engineering and technology ,7. Clean energy ,Industrial and Manufacturing Engineering ,Refrigerant ,TBPB ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,020401 chemical engineering ,Refrigeration ,0202 electrical engineering, electronic engineering, information engineering ,second law ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0204 chemical engineering ,Electrical and Electronic Engineering ,Process engineering ,Civil and Structural Engineering ,[PHYS]Physics [physics] ,hydrate ,business.industry ,Mechanical Engineering ,Building and Construction ,[PHYS.MECA]Physics [physics]/Mechanics [physics] ,Pollution ,Phase-change material ,Environmentally friendly ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,General Energy ,13. Climate action ,Heat transfer ,Slurry ,Environmental science ,CO2 ,slurry ,business ,phase change material ,Efficient energy use - Abstract
Please cite this article as: Pons M, Delahaye A, Fournaison L, Dalmazzone D, Energy analysis of two-phase secondary refrigeration in steady-state operation, part 2: Exergy analysis and effects of phase change kinetics, Energy (2018),; International audience; A great deal of attention is paid to secondary refrigeration as a means of reducing excessively high emissions of refrigerants (most of which have a potent greenhouse effect) due to leaks in large cooling units. Among the environmentally friendly fluids that can be used in secondary circuits for transporting and storing cold, hydrate slurries offer the advantage of significant latent heats of fusion associated with good fluidity. Research programs have focused attention on hydrate systems, including CO2, TBPB (tetra n butyl-phosphonium-bromide), and mixed CO2-TBPB hydrates. In addition to feasibility concerns, energy efficiency is also a crucial concern requiring an objective analysis of the improvements likely to result from these new materials. A numerical model of secondary refrigeration system was built for slurries ranging from ice-slurry to TBPB-CO2 mixed hydrate slurries. The circuit was designed for maximizing performance under various constraints relating to power rate, heat transfer areas, and flow ability. The effects of phase change kinetics on thermal exchanges were introduced in the model and in the exergy balance. The results, analyzed in terms of exergy losses, demonstrate the couplings through which kinetics influences global performance.
- Published
- 2018
- Full Text
- View/download PDF
21. Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition
- Author
-
Lian Tian, Arnaud Mantoux, Frédérique Mercier, Alexandre CRISCI, Reboud, R., Fabien Volpi, Gaël Giusti, Laetitia Rapenne, Christophe Vallée, Michel Pons, Carmen Jimenez, Elisabeth Blanquet, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire des matériaux et du génie physique (LMGP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des technologies de la microélectronique (LTM ), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE]Chemical Sciences/Material chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
22. Materials for very high temperature solar receivers
- Author
-
Johann Colas, Ludovic Charpentier, Marianne Balat-Pichelin, Michel Pons, Frederic Mercier, Danying Chen, Didier Pique, Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and SIL’TRONIX-ST, Archamps, France
- Subjects
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2018
23. Energy analysis of two-phase secondary refrigeration in steady-state operation, Part 1: global optimization and leading parameter
- Author
-
Thomas Dufour, Anthony Delahaye, Laurence Fournaison, Hong-Minh Hoang, Michel Pons, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11), Génie des procédés frigorifiques (UR GPAN), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), ANR-14-CE05-0045,Crisalhyd,Application de réfrigération secondaire par coulis d'hydrates de CO2 : de la cristallisation des hydrates à leur intégration dans des procédés de stockage et de transport de froid(2014), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Sorbonne Université - UFR d'Ingénierie (UFR 919), Sorbonne Université (SU)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), and ANR-14-CE05-0045,Crisalhyd,Application de réfrigération secondaire par coulis d’hydrates de CO2 : de la cristallisation des hydrates à leur intégration dans des procédés de stockage et de transport de froid(2014)
- Subjects
Exergy ,020209 energy ,ice ,02 engineering and technology ,7. Clean energy ,Industrial and Manufacturing Engineering ,Refrigerant ,TBPB ,020401 chemical engineering ,process optimization ,Refrigeration ,0202 electrical engineering, electronic engineering, information engineering ,Process optimization ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0204 chemical engineering ,Electrical and Electronic Engineering ,Process engineering ,Global optimization ,Civil and Structural Engineering ,[PHYS]Physics [physics] ,hydrate ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,business.industry ,Mechanical Engineering ,Building and Construction ,Pollution ,Phase-change material ,General Energy ,13. Climate action ,Slurry ,Environmental science ,CO2 ,slurry ,business ,phase change material ,Efficient energy use - Abstract
International audience; A great deal of attention is paid to secondary refrigeration as a means of reducing excessively high emissions of refrigerants (most of which have a potent greenhouse effect) due to leaks in large cooling units. Among the environmentally friendly fluids that can be used in secondary circuits for transporting and storing cold, hydrate slurries offer the advantage of significant latent heats of fusion associated with good fluidity. Research programs have focused attention on hydrate systems, including CO2, TBPB (tetra-n-butyl-phosphonium-bromide), and mixed CO2-TBPB hydrates. In addition to feasibility concerns, energy efficiency is also a crucial concern requiring an objective analysis of the improvements likely to result from these new materials. An impartial framework was thus constructed based on the principles of optimization methods. This approach was applied to these three hydrate slurries as well as to the well-known ice slurry for comparison purposes. A numerical model of secondary refrigeration system in steady state was built, on the basis of which optimized systems subjected to common external constraints can be designed for each slurry according to its thermophysical properties. Global performance can then be compared on a sound basis, which also makes it possible to identify the hydrate property that is most influential on energetic performance. Part 2 of this study is dedicated to exergy analysis and phase change kinetics.
- Published
- 2018
- Full Text
- View/download PDF
24. Chromium carbide growth at low temperature by a highly efficient DLI-MOCVD process in effluent recycling mode
- Author
-
Francis Maury, Raphaël Boichot, Eric Monsifrot, Michel Pons, Frédéric Schuster, Alexandre Michau, Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Dephis (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), CEA Tech en régions (CEA-TECH-Reg), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
Materials science ,Hard coatings ,Matériaux ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,Carbide ,law.invention ,Chromium ,chemistry.chemical_compound ,Carbide coatings ,Transition metal ,law ,MOCVD process ,0103 physical sciences ,Materials Chemistry ,[CHIM]Chemical Sciences ,Recycling ,010302 applied physics ,Nanocomposite ,Graphene ,Metallurgy ,Surfaces and Interfaces ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Bis(arene)chromium ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,Surfaces, Coatings and Films ,Amorphous solid ,chemistry ,Chemical engineering ,0210 nano-technology ,Chromium carbide - Abstract
International audience; The effect of direct recycling of effluents on the quality of CrxCy coatings grown by MOCVD using direct liquid injection (DLI) of bis(ethylbenzene)chromium(0) in toluene was investigated. The results are compared with those obtained using non-recycled solutions of precursor. Both types of coatings exhibit the same features. They are amorphous in the temperature range 673–823 K. They exhibit a dense and glassy-like microstructure and a high hardness (> 23 GPa). Analyses at the nanoscale revealed a nanocomposite microstructure consisting of free-C domains embedded in an amorphous Cr7C3 matrix characterized by strong interfaces and leading to an overall composition slightly higher than Cr7C3. The stiffness and strength of these interfaces are mainly due to at least two types of chemical bonds between Cr atoms and free-C: (i) Cr intercalation between graphene sheets and (ii) hexahapto η6-Cr bonding on the external graphene sheets of the free-C domains. The density of these interactions was found increasing by decreasing the concentration of the injected solution, as this occurred using a recycled solution. As a result, “recycled” coatings exhibit a higher nanohardness (29 GPa) than “new” coatings (23 GPa). This work demonstrates that using bis(arene)M(0) precursors, direct recycling of effluents is an efficient route to improve the conversion yield of DLI-MOCVD process making it cost-effective and competitive to produce protective carbide coatings of transition metals which share the same metal zero chemistry.
- Published
- 2017
- Full Text
- View/download PDF
25. Advances in nitride film and coating growth by chemical vapor deposition
- Author
-
Michel Pons, Danying Chen, Manoel Jacquemin, Juan Su, Raphael Boichot, Frederic Mercier, Elisabeth Blanquet, Sabine Lay, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Pons, Michel
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
26. A niching genetic algorithm applied to optimize a SiC-bulk crystal growth system
- Author
-
Michel Pons, Yuan Li, Juan Su, Xuejiang Chen, Elisabeth Blanquet, Shihezi University, Science et Ingénierie des Matériaux et Procédés (SIMaP ), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
010302 applied physics ,Materials science ,Mineralogy ,Crystal growth ,02 engineering and technology ,Substrate (electronics) ,Radius ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Inverse problem ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Computational physics ,Inorganic Chemistry ,Temperature gradient ,0103 physical sciences ,Thermal ,Materials Chemistry ,Growth rate ,0210 nano-technology ,Anisotropy ,ComputingMilieux_MISCELLANEOUS - Abstract
A niching genetic algorithm (NGA) was presented to optimize a SiC-bulk crystal growth system by PVT. The NGA based on clearing mechanism and its combination method with heat transfer model for SiC crystal growth were described in details. Then three inverse problems for optimization of growth system were carried out by NGA. Firstly, the radius of blind hole was optimized to decrease the radial temperature gradient along the substrate while the center temperature on the surface of substrate is fixed at 2500 K. Secondly, insulation materials with anisotropic thermal conductivities were selected to obtain much higher growth rate as 600, 800 and 1000 µm/h. Finally, the density of coils was also rearranged to minimize the temperature variation in the SiC powder. All the results were analyzed and discussed.
- Published
- 2017
- Full Text
- View/download PDF
27. HVPE of aluminum nitride, film evaluation and multiscale modeling of the growth process
- Author
-
Gael Giusti, Mikhail Chubarov, Raphaël Boichot, Michel Pons, Juan Su, Elisabeth Blanquet, D. Pique, Frédéric Mercier, Science et Ingénierie des Matériaux et Procédés [2016-2019] (SIMaP [2016-2019]), Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China, and SIL’TRONIX-ST, Archamps, France
- Subjects
010302 applied physics ,Supersaturation ,Fabrication ,Materials science ,02 engineering and technology ,Substrate (electronics) ,Chemical vapor deposition ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Nitride ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Epitaxy ,01 natural sciences ,Multiscale modeling ,Inorganic Chemistry ,Chemical engineering ,0103 physical sciences ,Materials Chemistry ,Thin film ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
The different steps of the fabrication of epitaxial AlN films (0.5–20 µm) by high temperature chemical vapor deposition called also HVPE (Hydride Vapor Phase Epitaxy) are reviewed (i) by thermodynamic modeling to analyze reactions in the chlorination chamber, (ii) by multicomponent heat and mass transport for a better knowledge of actual supersaturation of gas species above the substrate, (iii) by simple mechanical modeling to analyze the different source of stress during growth and (iv) by level set methods to represent the interface evolution at the micrometric level on patterned substrates. The evaluation of thin films is discussed in the light of modeling results. The joint use of the different modeling approaches allowed the quantification, for a 2″ substrate, of (i) the optimum temperature for the chlorination chamber (500 °C) to avoid AlCl specie formation, (ii) the transport of the main species AlCl3 diluted in NH3 and H2 and (iii) the actual supersaturation at the growth interface on 2D surfaces or 3D patterned surfaces to promote lateral epitaxial overgrowth and improve crystalline quality. Finally, the upscaling from 2″ to 4″ substrates is computed and validated.
- Published
- 2017
- Full Text
- View/download PDF
28. Study of surface reaction during selective epitaxy growth of silicon by thermodynamic analysis and density functional theory calculation
- Author
-
Jae-Min Park, Won-Jun Lee, Jongwan Jung, Michel Pons, Elisabeth Blanquet, Tirta R. Mayangsari, Luchana L. Yusup, Science et Ingénierie des Matériaux et Procédés (SIMaP ), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
010302 applied physics ,Materials science ,Argon ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,Substrate (electronics) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Epitaxy ,01 natural sciences ,7. Clean energy ,Inorganic Chemistry ,Adsorption ,Chemical engineering ,chemistry ,Computational chemistry ,Etching (microfabrication) ,Yield (chemistry) ,0103 physical sciences ,Materials Chemistry ,Deposition (phase transition) ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
We modeled and simulated the surface reaction of silicon precursor on different surfaces by thermodynamic analysis and density functional theory calculation. We considered SiH2Cl2 and argon as the silicon precursor and the carrier gas without etchant gas. First, the equilibrium composition of both gaseous and solid species was analyzed as a function of process temperature. SiCl4 is the dominant gaseous species at below 750 °C, and SiCl2 and HCl are dominant at higher temperatures, and the yield of silicon decreases with increasing temperature over 700 °C due to the etching of silicon by HCl. The yield of silicon for SiO2 substrate is lower than that for silicon substrate, especially at 1000 °C or higher. Zero deposition yield and the etching of SiO2 substrate at higher temperatures leads to selective growth on silicon substrate. Next, the adsorption and the reaction of silicon precursor was simulated on H-terminated silicon (100) substrate and on OH-terminated β-cristobalite substrate. The adsorption and reaction of a SiH2Cl2 molecule are spontaneous for both Si and SiO2 substrates. However, the energy barrier for reaction is very small (6×10−4 eV) for Si substrate, whereas the energy barrier is high (0.33 eV) for SiO2 substrate. This makes the differences in growth rate, which also supports the experimental results in literature.
- Published
- 2017
- Full Text
- View/download PDF
29. Evidence for a Cr metastable phase as a tracer in DLI-MOCVD chromium hard coatings usable in high temperature environment
- Author
-
Francis Maury, Michel Pons, Raphaël Boichot, Frédéric Schuster, Alexandre Michau, Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Grenoble Alpes - UGA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Science et Ingénierie des MAtériaux et Procédés - SIMAP (Saint-Martin-d'Hères, France), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA)), and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Materials science ,Hard coatings ,Matériaux ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,Ethylbenzene ,Carbide ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Metal ,chemistry.chemical_compound ,Chromium ,Tracer ,Phase (matter) ,Metastability ,0103 physical sciences ,Cr metastable phase ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Metalorganic vapour phase epitaxy ,Génie des procédés ,010302 applied physics ,Thiophenol ,Metallurgy ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,chemistry ,Chemical engineering ,visual_art ,Chromium coatings ,MOCVD ,visual_art.visual_art_medium ,0210 nano-technology ,Structural transformation - Abstract
International audience; Cr deposits are widely used as protective coatings but multifunctional performances are required in harsh environments motivating research on new processes. MOCVD of Cr metal coatings was carried out by direct liquid injection (DLI) of a unique solution containing bis(ethylbenzene)chromium as metal source and thiophenol as inhibitor of carbide formation. A low amount (
- Published
- 2017
- Full Text
- View/download PDF
30. CAPE-OPEN: Interoperability in Industrial Flowsheet Simulation Software
- Author
-
Michel Pons and Jasper M. van Baten
- Subjects
Software Engineering Process Group ,Engineering ,Team software process ,business.industry ,General Chemical Engineering ,Software development ,General Chemistry ,computer.software_genre ,Industrial and Manufacturing Engineering ,Software framework ,Goal-Driven Software Development Process ,Personal software process ,Software construction ,Systems engineering ,Package development process ,Software engineering ,business ,computer - Abstract
Chemical process modelling and simulation are widely used in process industries to progress in the understanding and in the improvement of many processes. Due to the complexity and variety of these processes, several pieces of software are often needed to model a given process, hence requiring interoperability between software. CAPE-OPEN is an industry standard for interoperability between process simulation software. Compared to proprietary interfaces of software applications, CAPE-OPEN allows for less overhead on programming and maintenance, fast access to market and a common basis for collaboration in joint projects.
- Published
- 2014
- Full Text
- View/download PDF
31. Epitaxial growth of AlN on c-plane sapphire by High Temperature Hydride Vapor Phase Epitaxy: Influence of the gas phase N/Al ratio and low temperature protective layer
- Author
-
A. Claudel, Sabine Lay, Raphaël Boichot, Stéphane Coindeau, Michel Pons, Alexandre Crisci, Elisabeth Blanquet, Frédéric Mercier, N. Coudurier, Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Advanced CERamics Deposition (ACERDE), and Institut Polytechnique de Grenoble - Grenoble Institute of Technology-ACERDE
- Subjects
Materials science ,Hydrogen ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Epitaxy ,01 natural sciences ,Crystal ,Stress (mechanics) ,Etching (microfabrication) ,0103 physical sciences ,Materials Chemistry ,010302 applied physics ,business.industry ,Hydride ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Surfaces and Interfaces ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Surfaces, Coatings and Films ,chemistry ,Sapphire ,Optoelectronics ,0210 nano-technology ,business ,Layer (electronics) - Abstract
International audience; AlN is epitaxially grown on c-plane sapphire by High Temperature Hydride Vapor Phase Epitaxy (HT-HVPE) at constant growth rate and thickness, while varying the N/Al ratio in the gas phase at 1500 °C. The influence of an additional low temperature (1200 °C) protective layer on AlN crystal quality is also assessed. The experiments and thermodynamic calculations show that the sapphire substrate is unstable at high temperature under hydrogen and ammonia while it is stable at low temperature or under a few hundred nanometers of AlN protective layer even at high temperature. In terms of AlN crystal quality, the optimal process developed here consists in depositing a 170 nm low temperature protective AlN layer with N/Al = 3 followed by a high temperature thick AlN layer grown with N/Al = 1.5. In this case, the interface between AlN and sapphire remains continuous (no etching) and the stress in the grown layer at room temperature is minimized by a balance of the growing tensile stress with the cooling compressive stress.
- Published
- 2013
- Full Text
- View/download PDF
32. Growth of Boron Nitride on (0001) AlN Templates by High Temperature-Hydride Vapor Phase Epitaxy (HT-HVPE)
- Author
-
Roman Reboud, Elisabeth Blanquet, Frédéric Mercier, N. Coudurier, Raphaël Boichot, Sabine Lay, Michel Pons, Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and CIFRE ACERDE
- Subjects
Materials science ,Nanowire ,Analytical chemistry ,02 engineering and technology ,Physics and Astronomy(all) ,Epitaxy ,01 natural sciences ,7. Clean energy ,law.invention ,chemistry.chemical_compound ,law ,0103 physical sciences ,Graphite ,010302 applied physics ,Hydride ,BCL3 ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Boron trichloride ,nanowire ,Boron nitride ,chemistry ,0210 nano-technology ,HT-HVPE ,Susceptor - Abstract
International audience; One mu m-thick (0001) t-BN layers have been grown on w-AlN template by HT-HVPE (High Temperature Hydride Vapor Phase Epitaxy). The experimental set-up consists of a vertical cold-wall quartz reactor working at low pressure with an inductively heated graphite susceptor. The used reactants are ammonia (NH3) and boron trichloride (BCl3). As-grown BN layers have been characterized by XRD and TEM. The influence of the temperature and the N/B ratio of precursors in the gas phase, on the c-lattice parameter of BN layer, have been investigated in order to optimize the crystalline quality. For a deposition at a temperature of 1600 degrees C and a N/B ratio of 7.5, the growth of a 2 mu m-thick t-BN layer with lattice parameters (a and c) of 2.50 and 6.78 angstrom has been achieved.
- Published
- 2013
- Full Text
- View/download PDF
33. Roughness generation during Si etching in Cl 2 pulsed plasma
- Author
-
Gilles Cunge, Odile Mourey, Maxime Darnon, Michel Pons, Camille Petit-Etienne, Emilie Despiau-Pujo, Olivier Joubert, P. Brichon, Eddy Lattu-Romain, Laboratoire des technologies de la microélectronique (LTM ), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
010302 applied physics ,[PHYS]Physics [physics] ,Materials science ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,Surfaces and Interfaces ,Plasma ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,Surfaces, Coatings and Films ,Ion ,chemistry ,Physics::Plasma Physics ,Etching (microfabrication) ,0103 physical sciences ,Surface roughness ,Plasma diagnostics ,Atomic physics ,Reactive-ion etching ,Inductively coupled plasma ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Pulsed plasmas are promising candidates to go beyond limitations of continuous waves' plasma. However, their interaction with surfaces remains poorly understood. The authors investigated the silicon etching mechanism in inductively coupled plasma (ICP) Cl2 operated either in an ICP-pulsed mode or in a bias-pulsed mode (in which only the bias power is pulsed). The authors observed systematically the development of an important surface roughness at a low duty cycle. By using plasma diagnostics, they show that the roughness is correlated to an anomalously large (Cl atoms flux)/(energetic ion flux) ratio in the pulsed mode. The rational is that the Cl atom flux is not modulated on the timescale of the plasma pulses although the ion fluxes and energy are modulated. As a result, a very strong surface chlorination occurs during the OFF period when the surface is not exposed to energetic ions. Therefore, each energetic ion in the ON period will bombard a heavily chlorinated silicon surface, leading to anomalously...
- Published
- 2016
- Full Text
- View/download PDF
34. Numerical and Computational Strategy for Pressure-Driven Steady-State Simulation of Oilfield Production
- Author
-
Xavier Joulia, Alain Vacher, Michel Pons, Martin Gainville, Pascal Floquet, ProSim (FRANCE), IFP Energies Nouvelles - IFPEN (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Michel Pons Technologie (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Laboratoire de génie chimique [ancien site de Basso-Cambo] (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, ProSim. SA (ProSim. SA), ProSim. SA, Institut Français du Pétrole, and Michel Pons Technologie
- Subjects
Engineering ,Pressure-driven simulation ,CAPE-OPEN ,020209 energy ,General Chemical Engineering ,Flow assurance ,Mechanical engineering ,Context (language use) ,02 engineering and technology ,computer.software_genre ,7. Clean energy ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,020401 chemical engineering ,0202 electrical engineering, electronic engineering, information engineering ,Production (economics) ,Génie chimique ,0204 chemical engineering ,business.industry ,Oilfield ,Control engineering ,Computer Science Applications ,Simulation software ,Dynamic simulation ,Transient (oscillation) ,business ,computer ,Steady state simulation ,Network analysis - Abstract
International audience; Within the TINA (Transient Integrated Network Analysis) research project and in partnership with Total, IFP is developing a new generation of simulation tool for flow assurance studies. This integrated simulation software will be able to perform multiphase simulations from the wellbore to the surface facilities. The purpose of this paper is to define, in a CAPE-OPEN compliant environment, a numerical and computational strategy for solving pressure-driven steady-state simulation problems, i.e. pure simulation and design problems, in the specific context of hydrocarbon production and transport from the wellbore to the surface facilities.
- Published
- 2009
35. Exergy analysis of solar collectors, from incident radiation to dissipation
- Author
-
Michel Pons, Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919), and Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Exergy ,Climate ,020209 energy ,Second Law ,Thermodynamics ,02 engineering and technology ,Thermal management of electronic devices and systems ,Radiation ,Direct radiation ,System Irreversibility ,Entropy (classical thermodynamics) ,Sankey diagram ,0202 electrical engineering, electronic engineering, information engineering ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Process engineering ,[PHYS]Physics [physics] ,Physics ,Direct Radiation ,Renewable Energy, Sustainability and the Environment ,business.industry ,Dissipation ,021001 nanoscience & nanotechnology ,Diffuse Radiation ,Exergy efficiency ,0210 nano-technology ,business - Abstract
International audience; It is essential to know the actual exergy input of solar radiation in a given location in order to establishthe exergy budget of a solar collector or any other solar-powered process. To do so, the theories on theentropy of attenuated radiation must be re-interpreted before developing a method for evaluating theexergy flux from meteorological data. It then becomes possible to build a generic framework fordescribing the exergy budget of solar collectors. Three main types of exergy losses can be identified inthis way. The first is related only to the type of technology chosen for the collector: flat-type collectorsand highly concentrating collectors do not have same exergy losses. The second type of exergy loss isrelated mainly to heat dissipation, showing that all dissipated heat fluxes can be combined as the overallexergy loss. The third type is related to the utility furnished by the collector. Graphical examples areshown in a diagram that provides more information than the Sankey diagram.
- Published
- 2012
- Full Text
- View/download PDF
36. Developments of TaN ALD Process for 3D Conformal Coatings
- Author
-
Stéphane Coindeau, Ioana Nuta, Elisabeth Blanquet, Michel Pons, Virginie Brizé, Alexis Farcy, Béatrice Doisneau, Laurent Artaud, Perrine Violet, Fabien Volpi, Raphaël Boichot, G. Berthomé, Arnaud Mantoux, and Thomas Prieur
- Subjects
Materials science ,Diffusion barrier ,business.industry ,Process Chemistry and Technology ,Nanotechnology ,Surfaces and Interfaces ,General Chemistry ,Carbon nanotube ,law.invention ,Atomic layer deposition ,chemistry.chemical_compound ,Tantalum nitride ,chemistry ,law ,Microelectronics ,Deposition (phase transition) ,Nanodot ,Thin film ,business - Abstract
There is a growing interest in producing tantalum nitride (TaN) thin films for various industrial applications. For example, in microelectronics, the development of IC technology is driven by the need to increase both performance and functionality while reducing power and cost. This goal can be achieved by several solutions among which the introduction of architecture enhancements such as 3D integration. The most challenging step is the deposition of a conformal, continuous, and adherent diffusion barrier. In this work, atomic layer deposition (ALD) of TaN thin films is explored using the combination between the thermodynamical behavior of the precursor, mass transfer in the reactor, and the operating conditions. TaN thin film deposition on very complex shape substrates, such as nanodots, TSV, silicon nanowires, and carbon nanotubes, has been evaluated.
- Published
- 2011
- Full Text
- View/download PDF
37. Significance of initial stages on the epitaxial growth of AlN using high temperature halide chemical vapor deposition
- Author
-
M. Balaji, Vincent Fellmann, Krishnan Baskar, Raphaël Boichot, Isabelle Gelard, Michel Pons, D. Pique, A. Claudel, Hervé Roussel, Stéphane Coindeau, and Elisabeth Blanquet
- Subjects
Full width at half maximum ,Crystallography ,Materials science ,X-ray crystallography ,Sapphire ,Analytical chemistry ,Nucleation ,Deposition (phase transition) ,Chemical vapor deposition ,Condensed Matter Physics ,Epitaxy ,Layer (electronics) - Abstract
AlN epilayers were grown on c-plane Sapphire substrates using High Temperature Halide Chemical Vapor Deposition (HTCVD). Introduction of low temperature nucleation layers (NLs) prior to the high temperature AlN (HT-AlN) layers was investigated. It was found that NLs stabilizes the epitaxial growth. NL deposition conditions were optimized to improve the quality of AlN epilayers. Increasing nucleation layer deposition temperature from 650 to 850 °C as well as the growth temperature of AlN epilayers from 1200 to 1400 °C improves the structural quality and surface morphology. X-ray diffraction of θ/2θ scan confirms that AlN layers deposited on NLs are (0002) oriented and X-ray rocking curve measurement shows FWHM values as low as 864 arcsec for (0002) plane. Surface steps and specular morphology were observed for such AlN epilayers (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2011
- Full Text
- View/download PDF
38. Investigation on AlN epitaxial growth and related etching phenomenon at high temperature using high temperature chemical vapor deposition process
- Author
-
D. Pique, Alexandre Crisci, Catherine Moisson, Raphaël Boichot, Didier Chaussende, H. Mank, Michel Pons, Béatrice Doisneau, Elisabeth Blanquet, G. Berthomé, A. Claudel, Advanced CERamics Deposition (ACERDE), Institut Polytechnique de Grenoble - Grenoble Institute of Technology-ACERDE, Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG), Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), NOVASIC, and NOVASiC
- Subjects
010302 applied physics ,Materials science ,Scanning electron microscope ,Analytical chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Substrate (electronics) ,Chemical vapor deposition ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Epitaxy ,7. Clean energy ,01 natural sciences ,Inorganic Chemistry ,symbols.namesake ,Etching (microfabrication) ,Transmission electron microscopy ,0103 physical sciences ,Materials Chemistry ,symbols ,Graphite ,0210 nano-technology ,Raman spectroscopy - Abstract
International audience; Thick MN layers were grown by high temperature chemical vapor deposition (HTCVD) on 8 degrees off-axis (0 0 0 1) 4H-SiC, on-axis (0 0 0 1) 6H-SiC and on-axis (0 0 0 1) AlN templates between 900 degrees C and 1600 degrees C. The experimental set-up consists of a vertical cold-wall reactor working at low pressure in which the reactions take place on a graphite susceptor heated by induction. The reactants used are ammonia (NH(3)) and aluminum chlorides (AlCl(x)) species in situ formed via Cl(2) reaction with high purity aluminum wire. As-grown AlN layers have been characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Optical Profilometry, Atomic Force Microscopy (AFM) and Raman spectroscopy. In this study, the influence of the deposition temperature and the N/Al ratio in the gas phase is studied in order to stabilize epitaxial growth. The epitaxy on AlN template is favored using a low N/Al ratio in the gas phase and a high temperature above 1400 degrees C. The crystalline quality of epitaxial AlN layers is found to increase with increasing deposition temperature from 1400 to 1500 degrees C. Growth rates up to 14 mu m h(-1) have been reached for epitaxial AlN layers. An important etching phenomenon is also observed at high temperature: apparition of pin holes certainly around threading dislocations at 1400-1500 degrees C and substrate etching at 1600 degrees C. (C) 2011 Elsevier B.V. All rights reserved.
- Published
- 2011
- Full Text
- View/download PDF
39. High temperature chemical vapor deposition of AlN/W1−xRex coatings on bulk SiC
- Author
-
L. Chaffron, M. Morais, G. Huot, Raphaël Boichot, F.-Z. Roki, Ph. Berne, Elisabeth Blanquet, C. Bernard, A. Claudel, Michel Pons, S. Poissonnet, D. Pique, and Frédéric Mercier
- Subjects
Materials science ,Aluminium nitride ,chemistry.chemical_element ,Surfaces and Interfaces ,General Chemistry ,Chemical vapor deposition ,Nitride ,Tungsten ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Micrometre ,chemistry.chemical_compound ,chemistry ,Aluminium ,Materials Chemistry ,Silicon carbide ,Composite material ,Thin film - Abstract
The residual porosity of structural silicon carbide (SiC) composites limits their use in advanced nuclear systems. The use of thick coatings of high-Z materials like tungsten (W) or tungsten alloys (W1−xRex) is a promising solution to overcome such problems. However, solid-state reactions occur between SiC and metals at high temperatures. An intermediate layer is therefore selected, based on thermodynamic computation. It is shown that aluminum nitride (AlN) could limit the interface reactivity at temperatures close to 1000 °C. Duplex AlN/W1−xRex coatings were fabricated in two steps by chemical vapor deposition on bulk silicon carbide to verify experimentally the theoretical material solution approach. Electron probe micro-analyses showed that, at the micrometer level, there was no interface reaction during the growth process. It is the first time that such a material stack has been fabricated, and it seems promising for the high-temperature use of SiC with tungsten alloys.
- Published
- 2010
- Full Text
- View/download PDF
40. Chromium Carbide Growth by Direct Liquid Injection Chemical Vapor Deposition in Long and Narrow Tubes, Experiments, Modeling and Simulation
- Author
-
Rapahel Boichot, Alexandre Michau, Francis Maury, Ioana Nuta, Yoan Gazal, Frédéric Schuster, Michel Pons, Commissariat à l'Energie Atomique et aux énergies alternatives - CEA (FRANCE), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut polytechnique de Grenoble (FRANCE), Université Grenoble Alpes - UGA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Science et Ingénierie des MAtériaux et Procédés - SIMAP (Saint-Martin-d'Hères, France), Institut National Polytechnique de Toulouse - INPT (FRANCE), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
Materials science ,Kinetic modeling ,Matériaux ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Chemical vapor deposition ,engineering.material ,inner-wall coatings ,01 natural sciences ,7. Clean energy ,[SPI.MAT]Engineering Sciences [physics]/Materials ,numerical simulations ,chemistry.chemical_compound ,Chromium ,Coating ,0103 physical sciences ,Numerical simulations ,Materials Chemistry ,chromium carbide ,Deposition (phase transition) ,Inner-wall coatings ,Total pressure ,010302 applied physics ,Protective coatings ,metalorganic chemical vapor deposition (MOCVD) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Surfaces and Interfaces ,Atmospheric temperature range ,kinetic modeling ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,Amorphous solid ,chemistry ,lcsh:TA1-2040 ,engineering ,protective coatings ,Metalorganic chemical vapor deposition (MOCVD) ,lcsh:Engineering (General). Civil engineering (General) ,Chromium carbide ,0210 nano-technology - Abstract
Chromium carbide layers were deposited using liquid-injection metal-organic chemical vapor deposition inside long (0.3 to 1 m) and narrow (8 to 24 mm in diameter) metallic tubes. The deposition was carried out using a molecular single-source, bis(benzene)chromium (BBC), as representative of the bis(arene)metal family diluted in toluene and injected with N2 as carrier gas. A multicomponent mass transport model for the simulation of the coupled fluid flow, heat transfer and chemistry was built. The kinetic mechanism of the growth of CrCx films was developed with the help of large-scale experiments to study the depletion of the precursors along the inner wall of the tube. The model fits well in the 400&ndash, 550 °, C temperature range and in the 1.3 ×, 102 to 7 ×, 103 Pa pressure range. The pressure is shown to have a pronounced effect on the deposition rate and thickness uniformity of the resulting coating. Below 525 °, C the structure, composition and morphology of the films are not affected by changes of total pressure or deposition temperature. The coatings are amorphous and their Cr:C ratio is about 2:1, i.e., intermediate between Cr7C3 and Cr3C2. The model was applied to the design of a long reactor (1 m), with a double injection successively and alternatively undertaken at each end to ensure the best uniformity with sufficient thickness. This innovative concept can be used to optimize industrial deposition processes inside long and narrow tubes and channels.
- Published
- 2018
- Full Text
- View/download PDF
41. Improvements of the Continuous Feed-Physical Vapor Transport Technique (CF-PVT) for the Seeded Growth of 3C-SiC Crystals
- Author
-
Thierry Ouisse, Roland Madar, Guoli L. Sun, Jean Marc Dedulle, Didier Chaussende, Michel Pons, Irina G. Galben-Sandulache, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), SPCS, Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG), J. Bauer, P. Friedrichs, M. Krieger, G. Pensl, and R. Rupp and T. Seyller
- Subjects
3C-SiC crystals ,Materials science ,Morphology (linguistics) ,Chemical ,02 engineering and technology ,01 natural sciences ,(CF-PVT) ,Thermal insulation ,Etching ,0103 physical sciences ,etching ,General Materials Science ,Growth rate ,Composite material ,010302 applied physics ,business.industry ,Mechanical Engineering ,Necking process ,Bulk crystal growth ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Crystallography ,Mechanics of Materials ,Seeding ,Seeded growth ,Double positioning boundaries (DPB) ,0210 nano-technology ,business ,Layer (electronics) ,Continuous Feed-Physical Vapor Transport Technique - Abstract
International audience; The Continuous Feed-Physical Vapor Transport Technique (CF-PVT) was optimized by considering the heating, thermal insulation and the geometry of growth cavity. The effects of seeds on the surface morphology of the grown layer have been discussed. We successfully grew 3C-SiC bulk with a diameter of 7.0 mm and 3.3 mm in height with a high growth rate of 0.8 mm/h by the CF-PVT technique
- Published
- 2010
- Full Text
- View/download PDF
42. Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth
- Author
-
Michel Pons, Frédéric Mercier, Didier Chaussende, J.M. Dedulle, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), and Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG)
- Subjects
Convection ,liquid-phase ,Thermodynamics ,02 engineering and technology ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Physics::Fluid Dynamics ,Inorganic Chemistry ,Fluid flows ,chemistry.chemical_compound ,silicon-carbide cyrstals ,Mass transfer ,0103 physical sciences ,Materials Chemistry ,Silicon carbide ,Fluid dynamics ,Top-seeded solution growth ,Wafer ,bulk instabilities ,molten flow ,010302 applied physics ,single-crystals ,Marangoni effect ,sublimation convection ,Chemistry ,Growth from high-temperature solutions ,Semiconducting materials ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Mechanics ,Computer simulation ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,seeded solution growth ,Heat transfer ,Sublimation (phase transition) ,0210 nano-technology - Abstract
International audience; Despite its real advantages compared to seeded sublimation growth, SiC solution growth has never given convincing results. The difficulty of stabilizing the growth front, and thus avoiding any polycrystal formation results from a poor description and understanding of the coupled phenomena that occur in the crucible. This paper addresses the coupled heat transfer and fluid dynamic modeling of the SiC solution growth process, with special attention being paid to the different convective flows in the liquid. It is demonstrated that both Marangoni and electromagnetic convections have to be avoided. The configuration where the flow patterns in front of the crystal are driven only by crystal rotation, insures the most stable growth front. The correlation between calculated results and experiments is presented and a 3C-SiC wafer grown by the optimized process is shown.
- Published
- 2010
- Full Text
- View/download PDF
43. Bulk Growth of SiC – Review on Advances of SiC Vapor Growth for Improved Doping and Systematic Study on Dislocation Evolution
- Author
-
Katja Konias, Peter J. Wellmann, Mathias Stockmeier, Ulrike Künecke, Andreas Magerl, Rainer Hock, Albrecht Winnacker, Ralf R. Muller, Philip Hens, Sakwe Aloysius Sakwe, Michel Pons, and Desirée Queren
- Subjects
Materials science ,Doping ,Vapor growth ,Nanotechnology ,Dislocation ,Engineering physics - Abstract
Summary This chapter contains sections titled: Introduction Experiments Results and discussions Spatial distribution of dislocations in SiC Conclusions References
- Published
- 2009
- Full Text
- View/download PDF
44. High-speed Growth and Characterization of Polycrystalline AlN Layers by High Temperature Chemical Vapor Deposition (HTCVD)
- Author
-
Rachel Martin, A. Claudel, Elisabeth Blanquet, D. Pique, Michel Pons, Didier Chaussende, Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG), Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Advanced CERamics Deposition (ACERDE), and Institut Polytechnique de Grenoble - Grenoble Institute of Technology-ACERDE
- Subjects
Materials science ,020209 energy ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Chemical vapor deposition ,021001 nanoscience & nanotechnology ,Grain size ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law.invention ,Ammonia ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,law ,Aluminium ,0202 electrical engineering, electronic engineering, information engineering ,Graphite ,Growth rate ,Crystallite ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS ,Susceptor - Abstract
In this paper, AlN synthesis is achieved by High Temperature CVD which consists of a graphite susceptor heated by induction in a home-built vertical cold-wall reactor working at low pressure. The reactants used are ammonia NH3 and aluminium chlorides AlClx species formed in situ via Cl2 reaction with high purity Al wire. AlN films were deposited on a 55 mm diameter graphite susceptor between 1200{degree sign}C and 1600{degree sign}C. The influence of deposition temperature on growth rate, surface morphology, grain size and crystalline state is presented. Growth rates of up to 230 µm.h-1 were reached. AlN layers were characterized by SEM, X-ray Diffraction, Raman spectroscopy and Optical Profilometry.
- Published
- 2009
- Full Text
- View/download PDF
45. Top Seeded Solution Growth of 3C-SiC Single Crystals
- Author
-
Michel Pons, Didier Chaussende, Jean Marc Dedulle, Roland Madar, Frédéric Mercier, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), and Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG)
- Subjects
Convection ,Materials science ,Nucleation ,02 engineering and technology ,01 natural sciences ,law.invention ,law ,0103 physical sciences ,Fluid dynamics ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,General Materials Science ,Growth rate ,Crystallization ,Dissolution ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Mechanical Engineering ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Crystallography ,Mechanics of Materials ,Chemical physics ,Seeding ,Sublimation (phase transition) ,0210 nano-technology - Abstract
The main problem for the development of 3C-SiC electronics is the lack of an adapted bulk growth process. The seeded sublimation method is not very adapted for the 3C polytype because of the solid-state transition from cubic to hexagonal that occurs at high temperature (above 1800°C). In this paper, we propose a new experimental set-up for the development of a solution route for the growth of high quality 3C-SiC crystals. By a coupled approach involving experiments and global process modeling, we have addressed the problems of dissolution and crystallization, elimination of parasitic nucleation and stabilization of the growth front. With an appropriate control of the different convection mechanisms, a stable growth front is demonstrated, with a growth rate of a few tens of µm/h at 1650°C. Further improvements and potentialities of this approach are discussed.
- Published
- 2009
- Full Text
- View/download PDF
46. Silicon Carbide Growth:C/Si Ratio Evaluation and Modeling
- Author
-
Shin Ichi Nishizawa, Jean Marc Dedulle, Peter J. Wellmann, Michel Pons, Elisabeth Blanquet, Didier Chaussende, Roland Madar, Science et Ingénierie des Matériaux et Procédés (SIMaP), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG), Laboratoire des matériaux et du génie physique (LMGP ), and Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Process equipment ,Hydrogen ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,Chemical vapor deposition ,Epitaxy ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Modeling and simulation ,chemistry.chemical_compound ,0103 physical sciences ,Silicon carbide ,Deposition (phase transition) ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,General Materials Science ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Mechanical Engineering ,Doping ,technology, industry, and agriculture ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Chemical engineering ,chemistry ,Mechanics of Materials ,0210 nano-technology - Abstract
Modeling and simulation of the SiC growth processes, Physical Vapor Transport (PVT), Chemical Vapor Deposition (CVD), are sufficiently mature to help building new process equipment or up-scaling old ones. It is possible (i) to simulate accurately temperature and deposition distributions, as well as doping (ii) to quantify the limiting phenomena, (iii) to understand the important role of different precursors in CVD and hydrogen additions in PVT. The first conclusion of this paper is the importance of the "effective" C/Si ratio during CVD epitaxy in hot-wall reactors and its capability to explain the doping concentrations. The second conclusion is the influence of the C/Si ratio in alternative bulk growth technique involving gas additions.
- Published
- 2008
- Full Text
- View/download PDF
47. Comparative Study of Differently Grown 3C-SiC Single Crystals with Birefringence Microscopy
- Author
-
Frédéric Mercier, Roland Madar, Michel Pons, Didier Chaussende, Laboratoire des matériaux et du génie physique (LMGP ), Institut National Polytechnique de Grenoble (INPG)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP), and Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Institut National Polytechnique de Grenoble (INPG)
- Subjects
spectroscopy ,Materials science ,Analytical chemistry ,Nucleation ,02 engineering and technology ,01 natural sciences ,0103 physical sciences ,Microscopy ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,General Materials Science ,Spectroscopy ,3C-SiC ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,High rate ,Birefringence ,birefringence ,Mechanical Engineering ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Crystallography ,Mechanics of Materials ,bulk growth ,0210 nano-technology - Abstract
International audience; We have investigated through birefiringence microscopy, a set of 3C-SiC crystals grown with the CF-PVT process, starting from different seeds and under different growth conditions. Through self nucleation experiments, the stable growth of very high quality 3C-SiC crystals at high temperature (2100 degrees C) and at high rate (roughly 0.2 mm/h) is demonstrated. The possibility to develop bulk growth of 3C-SiC crystals is discussed.
- Published
- 2008
- Full Text
- View/download PDF
48. Bulk growth of SiC - review on advances of SiC vapor growth for improved doping and systematic study on dislocation evolution
- Author
-
Andreas Magerl, Albrecht Winnacker, Ulrike Künecke, Mathias Stockmeier, Michel Pons, Philip Hens, Rainer Hock, Peter J. Wellmann, Ralf R. Muller, Desirée Queren, Katja Konias, and Sakwe Aloysius Sakwe
- Subjects
Fermi level ,Doping ,chemistry.chemical_element ,Nanotechnology ,Cathodoluminescence ,Condensed Matter Physics ,Isotropic etching ,Engineering physics ,Electronic, Optical and Magnetic Materials ,symbols.namesake ,chemistry.chemical_compound ,chemistry ,Aluminium ,symbols ,Silicon carbide ,Dislocation ,Boron - Abstract
This paper reviews research on advanced bulk crystal growth of SiC. A brief review highlights the benefits of the so called Modified Physical Vapor Transport Technique which uses an additional gas pipe for fine tuning of the growth cell of a conventional Physical Vapor Transport setup with additional gases. Main emphasis, however, will be laid on a systematic dislocation evolution study for various growth parameter sets. Besides doping, growth temperature was considered. Two main results were found: (i) In p-type SiC, irrespective of the incorporation of aluminum or boron acceptors, basal plane dislocations that are harmful for bipolar power devices appear less pronounced or are even absent compared to n-type SiC. (ii) Growth at elevated seed temperature (i.e. 2300 °C and higher) is beneficial for low dislocation densities. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2008
- Full Text
- View/download PDF
49. Status of SiC bulk growth processes
- Author
-
Michel Pons, Didier Chaussende, and Peter J. Wellmann
- Subjects
Focus (computing) ,Acoustics and Ultrasonics ,Process (engineering) ,Chemistry ,Mineralogy ,Condensed Matter Physics ,Engineering physics ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
The present paper gives an overview of the different routes to grow SiC single crystals. The focus is put on the new emerging processes compared with the well established ones. A review of the process engineering modelling is given. Finally, some selected results are pointed out as they should be considered for the future development of SiC material.
- Published
- 2007
- Full Text
- View/download PDF
50. Chlorinated silicon carbide CVD revisited for polycrystalline bulk growth
- Author
-
Michel Pons, M. Ucar-Morais, Elisabeth Blanquet, and Guy Chichignoud
- Subjects
Materials science ,Surfaces and Interfaces ,General Chemistry ,Chemical vapor deposition ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Methyltrichlorosilane ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Materials Chemistry ,Silicon carbide ,Surface roughness ,Deposition (phase transition) ,Wafer ,Crystallite ,Thin film - Abstract
Silicon carbide is interesting for high power, high temperature and high frequency applications but its development is limited by the low quality and high cost of single-crystalline wafers. The transfer by wafer-bonding of single-crystalline SiC thin films to a polycrystalline SiC support is an attractive way for lowering the cost. This transfer requires high quality polycrystalline substrates fabricated with high growth rate, controlled morphology (columnar, dense, well-oriented layers), and very low surface roughness (RMS
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.